IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E95-C No.12  (Publication Date:2012/12/01)

    Regular Section
  • L-Band SiGe HBT Frequency-Tunable Dual-Bandpass or Dual-Bandstop Differential Amplifiers Using Varactor-Loaded Series and Parallel LC Resonators

    Kazuyoshi SAKAMOTO  Yasushi ITOH  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    1839-1845

    L-band SiGe HBT frequency-tunable differential amplifiers with dual-bandpass or dual-bandstop responses have been developed for the next generation adaptive and/or reconfigurable wireless radios. Varactor-loaded dual-band resonators comprised of series and parallel LC circuits are employed in the output circuit of differential amplifiers for realizing dual-bandpass responses as well as the series feedback circuit for dual-bandstop responses. The varactor-loaded series and parallel LC resonator can provide a wider frequency separation between dual-band frequencies than the stacked LC resonator. With the use of the varactor-loaded dual-band resonator in the design of the low-noise SiGe HBT differential amplifier with dual-bandpass responses, the lower-band frequency can be varied from 0.58 to 0.77 GHz with a fixed upper-band frequency of 1.54 GHz. Meanwhile, the upper-band frequency can be varied from 1.1 to 1.5 GHz for a fixed lower-band frequency of 0.57 GHz. The dual-band gain was 6.4 to 13.3 dB over the whole frequency band. In addition, with the use of the varactor-loaded dual-band resonator in the design of the low-noise differential amplifier with dual-bandstop responses, the lower bandstop frequency can be varied from 0.38 to 0.68 GHz with an upper bandstop frequency from 1.05 to 1.12 GHz. Meanwhile, the upper bandstop frequency can be varied from 0.69 to 1.02 GHz for a lower bandstop frequency of 0.38 GHz. The maximal dual-band rejection of gain was 14.4 dB. The varactor-loaded dual-band resonator presented in this paper is expected to greatly contribute to realizing the next generation adaptive and/or reconfigurable wireless transceivers.

  • Extension of the LTV Phase Noise Model of Electrical Oscillators for the Output Harmonics

    Seyed Amir HASHEMI  Hassan GHAFOORIFARD  Abdolali ABDIPOUR  

     
    PAPER-Electronic Circuits

      Page(s):
    1846-1856

    In this paper, using the Linear Time Variant (LTV) phase noise model and considering higher order harmonics generated by the oscillator output signal, a more general formula for transformation of the excess phase to the output signal is presented. Despite the basic LTV model which assumes that the total carrier power is within the fundamental harmonic, in the proposed model, the total carrier power is assumed to be distributed among all output harmonics. For the first harmonic, the developed expressions reduce to the basic LTV formulas. Simulation and experimental results are used to ensure the validity of the model.

  • Frequency Resolution Enhancement for Digitally-Controlled Oscillator Based on a Single-Period Switching Scheme

    Kazutoshi KODAMA  Tetsuya IIZUKA  Toru NAKURA  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Page(s):
    1857-1863

    This paper proposes a high frequency resolution Digitally-Controlled Oscillator (DCO) using a single-period control bit switching scheme. The proposed scheme controls the tuning word of DCO in a single period for the fine frequency tuning. The LC type DCO is implemented to realize the proposed scheme, and is fabricated using a standard 65 nm CMOS technology. The measurement results show that the implemented DCO improves the frequency resolution from 560 kHz to 180 kHz without phase noise degradation with an additional area of 200 µm2.

  • TSV Geometrical Variations and Optimization Metric with Repeaters for 3D IC

    Hung Viet NGUYEN  Myunghwan RYU  Youngmin KIM  

     
    PAPER-Integrated Electronics

      Page(s):
    1864-1871

    This paper evaluates the impact of Through-Silicon Via (TSV) on the performance and power consumption of 3D circuitry. The physical and electrical model of TSV which considers the coupling effects with adjacent TSVs is exploited in our investigation. Simulation results show that the overall performance of 3D IC infused with TSV can be improved noticeably. The frequency of the ring oscillator in 4-tier stacking layout soars up to two times compared with one in 2D planar. Furthermore, TSV process variations are examined by Monte Carlo simulations to figure out the geometrical factor having more impact in manufacturing. An in-depth research on repeater associated with TSV offers a metric to compute the optimization of 3D systems integration in terms of performance and energy dissipation. By such optimization metric with 45 nm MOSFET used in our circuit layout, it is found that the optimal number of tiers in both performance and power consumption approaches 4 since the substantial TSV-TSV coupling effect in the worst case of interference is expected in 3D IC.

  • Acceleration of Block Matching on a Low-Power Heterogeneous Multi-Core Processor Based on DTU Data-Transfer with Data Re-Allocation

    Yoshitaka HIRAMATSU  Hasitha Muthumala WAIDYASOORIYA  Masanori HARIYAMA  Toru NOJIRI  Kunio UCHIYAMA  Michitaka KAMEYAMA  

     
    PAPER-Integrated Electronics

      Page(s):
    1872-1882

    The large data-transfer time among different cores is a big problem in heterogeneous multi-core processors. This paper presents a method to accelerate the data transfers exploiting data-transfer-units together with complex memory allocation. We used block matching, which is very common in image processing, to evaluate our technique. The proposed method reduces the data-transfer time by more than 42% compared to the earlier works that use CPU-based data transfers. Moreover, the total processing time is only 15 ms for a VGA image with 1616 pixel blocks.

  • Ultra Linear Modulator with High Output RF Gain Using a 12 MMI Coupler

    Peng YUE  Qian-nan LI  Xiang YI  Tuo WANG  Zeng-ji LIU  Geng CHEN  Hua-xi GU  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Page(s):
    1883-1886

    A novel and compact electro-optic modulator implemented by a combination of a 12 multimode interference (MMI) coupler and an integrated Mach-Zehnder interferometer (MZI) modulator consisting of a microring and a phase modulator (PM) is presented and analyzed theoretically. It is shown that the proposed modulator offers both ultra-linearity and high output RF gain simultaneously, with no requirements for complicated and precise direct current (DC) control.

  • A Fractional-N PLL with Dual-Mode Detector and Counter

    Fitzgerald Sungkyung PARK  Nikolaus KLEMMER  

     
    BRIEF PAPER-Integrated Electronics

      Page(s):
    1887-1890

    A fractional-N phase-locked loop (PLL) is designed for the DigRF interface. The digital part of the PLL mainly consists of a dual-mode phase frequency detector (PFD), a digital counter, and a digital delta-sigma modulator (DSM). The PFD can operate on either 52 MHz or 26 MHz reference frequencies, depending on its use of only the rising edge or both the rising and the falling edges of the reference clock. The interface between the counter and the DSM is designed to give enough timing margin in terms of the signal round-trip delay. The circuitry is implemented using a 90-nm CMOS process technology with a 1.2-V supply, draining 1 mA.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.