Given a graph G=(V,E), a set of vertices S ⊆ V covers v ∈ V if the edge connectivity between S and v is at least a given number k. Vertices in S are called sources. The source location problem is a problem of finding a minimum-size source set covering all vertices of a given graph. This paper presents a new variation of the problem, called maximum-cover source-location problem, which finds a source set S with a given size p, maximizing the sum of the weight of vertices covered by S. It presents an O(np + m + nlog n)-time algorithm for k=2, where n=|V| and m=|E|. Especially it runs linear time if G is connected. This algorithm uses a subroutine for finding a subtree with the maximum weight among p-leaf trees of a given vertex-weighted tree. For the problem we give a greedy-based linear-time algorithm, which is an extension of the linear-time algorithm for finding a longest path of a given tree presented by E. W. Dijkstra around 1960. Moreover, we show some polynomial solvable cases, e.g., a given graph is a tree or (k-1)-edge-connected, and NP-hard cases, e.g., a vertex-cost function is given or G is a digraph.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kenya SUGIHARA, Hiro ITO, "Maximum-Cover Source-Location Problems" in IEICE TRANSACTIONS on Fundamentals,
vol. E89-A, no. 5, pp. 1370-1377, May 2006, doi: 10.1093/ietfec/e89-a.5.1370.
Abstract: Given a graph G=(V,E), a set of vertices S ⊆ V covers v ∈ V if the edge connectivity between S and v is at least a given number k. Vertices in S are called sources. The source location problem is a problem of finding a minimum-size source set covering all vertices of a given graph. This paper presents a new variation of the problem, called maximum-cover source-location problem, which finds a source set S with a given size p, maximizing the sum of the weight of vertices covered by S. It presents an O(np + m + nlog n)-time algorithm for k=2, where n=|V| and m=|E|. Especially it runs linear time if G is connected. This algorithm uses a subroutine for finding a subtree with the maximum weight among p-leaf trees of a given vertex-weighted tree. For the problem we give a greedy-based linear-time algorithm, which is an extension of the linear-time algorithm for finding a longest path of a given tree presented by E. W. Dijkstra around 1960. Moreover, we show some polynomial solvable cases, e.g., a given graph is a tree or (k-1)-edge-connected, and NP-hard cases, e.g., a vertex-cost function is given or G is a digraph.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e89-a.5.1370/_p
Copy
@ARTICLE{e89-a_5_1370,
author={Kenya SUGIHARA, Hiro ITO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Maximum-Cover Source-Location Problems},
year={2006},
volume={E89-A},
number={5},
pages={1370-1377},
abstract={Given a graph G=(V,E), a set of vertices S ⊆ V covers v ∈ V if the edge connectivity between S and v is at least a given number k. Vertices in S are called sources. The source location problem is a problem of finding a minimum-size source set covering all vertices of a given graph. This paper presents a new variation of the problem, called maximum-cover source-location problem, which finds a source set S with a given size p, maximizing the sum of the weight of vertices covered by S. It presents an O(np + m + nlog n)-time algorithm for k=2, where n=|V| and m=|E|. Especially it runs linear time if G is connected. This algorithm uses a subroutine for finding a subtree with the maximum weight among p-leaf trees of a given vertex-weighted tree. For the problem we give a greedy-based linear-time algorithm, which is an extension of the linear-time algorithm for finding a longest path of a given tree presented by E. W. Dijkstra around 1960. Moreover, we show some polynomial solvable cases, e.g., a given graph is a tree or (k-1)-edge-connected, and NP-hard cases, e.g., a vertex-cost function is given or G is a digraph.},
keywords={},
doi={10.1093/ietfec/e89-a.5.1370},
ISSN={1745-1337},
month={May},}
Copy
TY - JOUR
TI - Maximum-Cover Source-Location Problems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1370
EP - 1377
AU - Kenya SUGIHARA
AU - Hiro ITO
PY - 2006
DO - 10.1093/ietfec/e89-a.5.1370
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E89-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2006
AB - Given a graph G=(V,E), a set of vertices S ⊆ V covers v ∈ V if the edge connectivity between S and v is at least a given number k. Vertices in S are called sources. The source location problem is a problem of finding a minimum-size source set covering all vertices of a given graph. This paper presents a new variation of the problem, called maximum-cover source-location problem, which finds a source set S with a given size p, maximizing the sum of the weight of vertices covered by S. It presents an O(np + m + nlog n)-time algorithm for k=2, where n=|V| and m=|E|. Especially it runs linear time if G is connected. This algorithm uses a subroutine for finding a subtree with the maximum weight among p-leaf trees of a given vertex-weighted tree. For the problem we give a greedy-based linear-time algorithm, which is an extension of the linear-time algorithm for finding a longest path of a given tree presented by E. W. Dijkstra around 1960. Moreover, we show some polynomial solvable cases, e.g., a given graph is a tree or (k-1)-edge-connected, and NP-hard cases, e.g., a vertex-cost function is given or G is a digraph.
ER -