Junnosuke HOSHIDO Tonan KAMATA Tsutomu ANSAI Ryuhei UEHARA
Shin-ichi NAKANO
Shang LU Kohei HATANO Shuji KIJIMA Eiji TAKIMOTO
Lin ZHOU Yanxiang CAO Qirui WANG Yunling CHENG Chenghao ZHUANG Yuxi DENG
Zhen WANG Longye WANG
Naohiro TODA Tetsuya NAKAGAMI
Haijun Wang Tao Hu Dongdong Chen Huiwei Yao Runze He Di Wu Zhifu Tian
Jianqiang NI Gaoli WANG Yingxin LI Siwei SUN
Rui CHENG Yun JIANG Qinglin ZHANG Qiaoqiao XIA
Ren TOGO Rintaro YANAGI Masato KAWAI Takahiro OGAWA Miki HASEYAMA
Naoki TATTA Yuki SAKATA Rie JINKI Yuukou HORITA
Kundan LAL DAS Munehisa SEKIKAWA Naohiko INABA
Menglong WU Tianao YAO Zhe XING Jianwen ZHANG Yumeng LIN
Jian ZHANG Zhao GUANG Wanjuan SONG Zhiyan XU
Shinya Matsumoto Daiki Ikemoto Takuya Abe Kan Okubo Kiyoshi Nishikawa
Kazuki HARADA Yuta MARUYAMA Tomonori TASHIRO Gosuke OHASHI
Zezhong WANG Masayuki SHIMODA Atsushi TAKAHASHI
Pierpaolo AGAMENNONE
Jianmao XIAO Jianyu ZOU Yuanlong CAO Yong ZHOU Ziwei YE Xun SHAO
Kazumasa ARIMURA Ryoichi MIYAUCHI Koichi TANNO
Shinichi NISHIZAWA Shinji KIMURA
Zhe LIU Wu GUAN Ziqin YAN Liping LIANG
Shuichi OHNO Shenjian WANG Kiyotsugu TAKABA
Yindong CHEN Wandong CHEN Dancheng HUANG
Xiaohe HE Zongwang LI Wei HUANG Junyan XIANG Chengxi ZHANG Zhuochen XIE Xuwen LIANG
Conggai LI Feng LIU Yingying LI Yanli XU
Siwei Yang Tingli Li Tao Hu Wenzhi Zhao
Takahiro FUJITA Kazuyuki WADA
Kazuma TAKA Tatsuya ISHIKAWA Kosei SAKAMOTO Takanori ISOBE
Quang-Thang DUONG Kohei MATSUKAWA Quoc-Trinh VO Minoru OKADA
Sihua LIU Xiaodong ZHU Kai KANG Li WAN Yong WANG
Kazuya YAMAMOTO Nobukazu TAKAI
Yasuhiro Sugimoto Nobukazu Takai
Ho-Lim CHOI
Weibang DAI Xiaogang CHEN Houpeng CHEN Sannian SONG Yichen SONG Shunfen LI Tao HONG Zhitang SONG
Duo Zhang Shishan Qi
Young Ghyu Sun Soo Hyun Kim Dong In Kim Jin Young Kim
Hongbin ZHANG Ao ZHAN Jing HAN Chengyu WU Zhengqiang WANG
Yuli YANG Jianxin SONG Dan YU Xiaoyan HAO Yongle CHEN
Kazuki IWAHANA Naoto YANAI Atsuo INOMATA Toru FUJIWARA
Rikuto KURAHARA Kosei SAKAMOTO Takanori ISOBE
Elham AMIRI Mojtaba JOODAKI
Qingqi ZHANG Xiaoan BAO Ren WU Mitsuru NAKATA Qi-Wei GE
Jiaqi Wang Aijun Liu Changjun Yu
Ruo-Fei Wang Jia Zhang Jun-Feng Liu Jing-Wei Tang
Yingnan QI Chuhong TANG Haiyang LIU Lianrong MA
Yi XIONG Senanayake THILAK Daisuke ARAI Jun IMAOKA Masayoshi YAMAMOTO
Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Manabu HAGIWARA
Kazuo MUROTA Ken'ichiro TANAKA
The concept of M-convex functions has recently been generalized for functions defined on constant-parity jump systems. The b-matching problem and its generalization provide canonical examples of M-convex functions on jump systems. In this paper, we propose a steepest descent algorithm for minimizing an M-convex function on a constant-parity jump system.
Pino CABALLERO-GIL Amparo FUSTER-SABATER
The aim of this research is the efficient cryptanalysis of the Shrinking Generator through its characterization by means of Linear Hybrid Cellular Automata. This paper describes a new known-plaintext attack based on the computation of the characteristic polynomials of sub-automata and on the generation of the Galois field associated to one of the Linear Feedback Shift Registers components of the generator. The proposed algorithm allows predicting with absolute certainty, many unseen bits of the keystream sequence, thanks to the knowledge of both registers lengths, the characteristic polynomial of one of the registers, and the interception of a variable number of keystream bits.
Kazuhiko USHIO Hideaki FUJIMOTO
We show that the necessary and sufficient condition for the existence of a balanced C4-trefoil decomposition of the complete multi-graph λKn is λ(n-1) ≡ 0 (mod 24) and n ≥ 10. Decomposition algorithms are also given.
Katsuhisa YAMANAKA Shin-ichi NAKANO
A naive coding of floorplans needs 2m bits for each floorplan. In this paper we give a new simple coding of floorplans, which needs only 5m/3 bits for each floorplan.
Toshiya ITOH Noriyuki TAKAHASHI
The recent burst growth of the Internet use overloads networking systems and degrades the quality of communications, e.g., bandwidth loss, packet drops, delay of responses, etc. To overcome such degradation of communication quality, the notion of Quality of Service (QoS) has received attention in practice. In general, QoS switches have several queues and each queue has several slots to store arriving packets. Since network traffic changes frequently, QoS switches need to control arriving packets to maximize the total priorities of transmitted packets, where the priorities are given by nonnegative values and correspond to the quality of service required to each packet. In this paper, we first derive the upper bounds for the competitive ratio of multi-queue preemptive QoS problem with priority between 1/α and 1, i.e., for any α ≥ 1, the algorithm TLH is (3-1/α)-competitive. This is a generalization of known results--for the case that packets have only priority 1 (α =1), the algorithm GREEDY (or TLH) is 2-competitive; for the case that packets have priorities between 0 and 1 (α = ∞), the algorithm TLH is 3-competitive. Then we consider the lower bounds for the competitive ratio of multi-queue preemptive QoS problem with priority between 0 and 1, and show that the competitive ratio of any multi-queue preemptive QoS algorithm is at least 1.514.
Cho-chin LIN Da-wei WANG Tsan-sheng HSU
We discuss the problem of finding a dominant sequence for sending input data items from a low-end client to a server for computational intensive tasks under the realistic assumption of unpredictable communication behavior. Under this assumption, the client has to send the input data items using a specified sequence to maximize the number of computations performed by the server at any time. The sequence-finding problem is NP-hard for the general case. In this paper, we address three fundamental and useful applications: the product of two polynomials, matrices multiplication and Fast Fourier Transform. We show that the sequence-finding problems of the three applications can be solved optimally in linear time. However, we also show counter examples to rule out any possibility of finding a dominant sequence for sparse cases of the three applications. Finally, a simulation is conducted to show the usefulness of our method.
A linkage is a collection of line segments, called bars, possibly joined at their ends, called joints. We consider flattening a tree-like linkage, that is, a continuous motion of their bars from an initial configuration to a final configuration looking like a"straight line segment," preserving the length of each bar and not crossing any two bars. In this paper, we introduce a new class of linkages, called "radial trees," and show that there exists a radial tree which cannot be flattened.
Tatsuya AKUTSU Morihiro HAYASHIDA Dukka Bahadur K.C. Etsuji TOMITA Jun'ichi SUZUKI Katsuhisa HORIMOTO
The protein threading problem with profiles is known to be efficiently solvable using dynamic programming. In this paper, we consider a variant of the protein threading problem with profiles in which constraints on distances between residues are given. We prove that protein threading with profiles and constraints is NP-hard. Moreover, we show a strong hardness result on the approximation of an optimal threading satisfying all the constraints. On the other hand, we develop two practical algorithms: CLIQUETHREAD and BBDPTHREAD. CLIQUETHREAD reduces the threading problem to the maximum edge-weight clique problem, whereas BBDPTHREAD combines dynamic programming and branch-and-bound techniques. We perform computational experiments using protein structure data in PDB (Protein Data Bank) using simulated distance constraints. The results show that constraints are useful to improve the alignment accuracy of the target sequence and the template structure. Moreover, these results also show that BBDPTHREAD is in general faster than CLIQUETHREAD for larger size proteins whereas CLIQUETHREAD is useful if there does not exist a feasible threading.
A topological book embedding of a graph is an embedding in a book that carries the vertices in the spine of the book and the edges in the pages so that edges are allowed to cross the spine. Recently, the author has shown that for an arbitrary graph G with n vertices there exists a d+1-page book embedding of G in which each edge crosses the spine
We deal with quadratic semi-assignment problems with symmetric distances. This symmetry reduces the number of variables in its mixed integer programming formulation. We investigate a polytope arising from the problem, and obtain some basic polyhedral properties, the dimension, the affine hull, and certain facets through an isomorphic projection. We also present a class of facets.
We first model the variants of OAEP and SAEP by changing a construction and position of a redundancy, and establish a universal proof technique in the random oracle model, the comprehensive event dividing tree. We then make a taxonomical security consideration of the variants of OAEP and SAEP, based on the assumptions of one-wayness and partial-domain one-wayness of the encryption permutation, by applying the tree. Furthermore, we demonstrate the concrete attack procedures against all insecure schemes; we insist that the security proof failure leads to some attacks. From the security consideration, we find that one of the variants leads to a scheme without the redundancy; the scheme is not PA (plaintext aware) but IND-CCA2 secure. Finally, we conclude that some of them are practical in terms of security tightness and short bandwidth.
Seigo ARITA Kazuto MATSUO Koh-ichi NAGAO Mahoro SHIMURA
This paper proposes a Weil descent attack against elliptic curve cryptosystems over quartic extension fields. The scenario of the attack is as follows: First, one reduces a DLP on a Weierstrass form over the quartic extention of a finite field k to a DLP on a special form, called Scholten form, over the same field. Second, one reduces the DLP on the Scholten form to a DLP on a genus two hyperelliptic curve over the quadratic extension of k. Then, one reduces the DLP on the hyperelliptic curve to one on a Cab model over k. Finally, one obtains the discrete-log of original DLP by applying the Gaudry method to the DLP on the Cab model. In order to carry out the scenario, this paper shows that many of elliptic curve discrete-log problems over quartic extension fields of odd characteristics are reduced to genus two hyperelliptic curve discrete-log problems over quadratic extension fields, and that almost all of the genus two hyperelliptic curve discrete-log problems over quadratic extension fields of odd characteristics come under Weil descent attack. This means that many of elliptic curve cryptosystems over quartic extension fields of odd characteristics can be attacked uniformly.
In this paper, we will report practical modifications of the side-channel analysis to (EC)DSA [1],[2],[5],[34] that Leadbitter et al. have proposed in [16]. To apply the analyses, we assume that the window method is used in the exponentiation or elliptic curve (EC) scalar multiplication and the side-channel information described in Sect. 3.2 can be collected. So far, the method in [16] hasn't been effective when the size q of a cyclic group used in (EC)DSA is 160 bit long and the window size w < 9. We show that the modified method we propose in this paper is effective even when q is 160 bit long and w=4. This shows that our method is effective for various practical implementations, e.g., that in resource restricted environment like IC card devises. First, we estimate the window size w necessary for the proposed analyses (attacks) to succeed. Then by experiment of the new method, we show that private keys of (EC)DSA can be obtained under the above assumptions, in practical time and with sufficient success rate. The result raises the necessity of countermeasures against the analyses (attacks) in the window method based implementation of (EC)DSA.
Let H be a graph with a designated vertex s, where edges are weighted by nonnegative reals. Splitting edges e={u,s} and e'={s,v} at s is an operation that reduces the weight of each of e and e' by a real δ>0 while increasing the weight of edge {u,v} by δ. It is known that all edges incident to s can be split off while preserving the edge-connectivity of H and that such a complete splitting is used to solve many connectivity problems. In this paper, we give an O(mn+n2log n) time algorithm for finding a complete splitting in a graph with n vertices and m edges.
In this paper, we study the feedback vertex set problem for trivalent Cayley graphs, and construct a minimum feedback vertex set in trivalent Cayley graphs using the result on cube-connected cycles and the Cayley graph representation of trivalent Cayley graphs.
Group signature schemes with membership revocation have been intensively researched. However, signing and/or verification of some existing schemes have computational costs of O(R), where R is the number of revoked members. Existing schemes using a dynamic accumulator or a similar technique have efficient signing and verifications with O(1) complexity. However, before signing, the signer has to modify his secret key with O(N) or O(R) complexity, where N is the group size. Therefore, for larger groups, signers suffer from enormous costs. On the other hand, an efficient scheme for middle-scale groups with about 1,000 members is previously proposed, where the signer need not modify his secret key. However this scheme also suffers from heavy signing/verification costs for larger groups with more than 10,000 members. In this paper, we adapt the middle-scale scheme to larger groups ranging from 1,000 to 1,000,000 members. At the sacrifice of the group manager's slight cost, our signing/verification is sufficiently efficient.
Kazuya HARAGUCHI Toshihide IBARAKI
We consider the classification problem to construct a classifier c:{0,1}n
Hiro ITO Kazuo IWAMA Takeyuki TAMURA
In STS-based mapping, it is necessary to obtain the correct order of probes in a DNA sequence from a given set of fragments or an equivalently a hybridization matrix A. It is well-known that the problem is formulated as the combinatorial problem of obtaining a permutation of A's columns so that the resulting matrix has a consecutive-one property. If the data (the hybridization matrix) is error free and includes enough information, then the above column order uniquely determines the correct order of the probes. Unfortunately this does not hold if the data include errors, and this has been a popular research target in computational biology. Even if there is no error, ambiguities in the probe order may still remain. This in fact happens because of the lack of some information regarding the data, but almost no further investigation has previously been made. In this paper, we define a measure of such imperfectness of the data as the minimum amount of the additional fragments that are needed to uniquely fix the probe order. Polynomial-time algorithms to compute such additional fragments of the minimum cost are presented. A computer simulation using genes of human chromosome 20 is also noted.
Naoto KOBAYASHI Toshiyasu MATSUSHIMA Shigeichi HIRASAWA
We propose transformation of a parity-check matrix of any low-density parity-check code. A code with transformed parity-check matrix is an equivalent of a code with the original parity-check matrix. For the binary erasure channel, performance of a message-passing algorithm with a transformed parity-check matrix is better than that with the original matrix.
Tomohiko SAITO Toshiyasu MATSUSHIMA Shigeichi HIRASAWA
Orthogonal Arrays (OAs) have been playing important roles in the field of experimental design. It has been known that OAs are closely related to error-correcting codes. Therefore, many OAs can be constructed from error-correcting codes. But these OAs are suitable for only cases that equal interaction effects can be assumed, for example, all two-factor interaction effects. Since these cases are rare in experimental design, we cannot say that OAs from error-correcting codes are practical. In this paper, we define OAs with unequal strength. In terms of our terminology, OAs from error-correcting codes are OAs with equal strength. We show that OAs with unequal strength are closer to practical OAs than OAs with equal strength. And we clarify the relation between OAs with unequal strength and unequal error-correcting codes. Finally, we propose some construction methods of OAs with unequal strength from unequal error-correcting codes.
Dong-Guk HAN Katsuyuki OKEYA Tae Hyun KIM Yoon Sung HWANG Beomin KIM Young-Ho PARK
We propose a new analysis technique against a class of countermeasure using randomized binary signed digit (BSD) representations. We also introduce some invariant properties between BSD representations. The proposed analysis technique can directly recover the secret key from power measurements without information for algorithm because of the invariant properties of BSD representation. Thus the proposed attack is applicable to all countermeasures using BSD representations. Finally, we give the simulation results against some countermeasures using BSD representation such as Ha-Moon method, Ebeid-Hasan method, and the method of Agagliate et al. The results show that the proposed attack is practical analysis method.
We propose a new group signature scheme which is secure if we assume the Decision Diffie-Hellman assumption, the q-Strong Diffie-Hellman assumption, and the existence of random oracles. The proposed scheme is the most efficient among the all previous group signature schemes in signature length and in computational complexity. This paper is the full version of the extended abstract appeared in ACISP 2005 [17].
Recently, Boneh and Boyen proposed a new provably secure short signature scheme under the q-strong Diffie-Hellman assumption without random oracles. This scheme is based on bilinear map which is different from Cramer-Shoup signature scheme (which is based on the strong RSA assumption). However, Tan [17] showed that Boneh- Boyen scheme is subjected to key substitution attacks in the multi-user setting. In this paper, we propose a new signature scheme. We prove that the proposed scheme is provably secured against existential forgery under adaptive chosen message attack in the standard model and also secure against key substitution attacks.
A radio network (RN for short) is a distributed system with no central arbiter, consisting of n radio transceivers, henceforth referred to as stations. We assume that the stations run on batteries and expends power while broadcasting/receiving a data packet. Thus, the most important measure to evaluate protocols on the radio network is the number of awake time slots, in which a station is broadcasting/receiving a data packet. We also assume that the stations are identical and have no unique ID number, and no station knows the number n of the stations. For given n keys one for each station, the ranking problem asks each station to determine the number of keys in the RN smaller than its own key. The main contribution of this paper is to present an optimal randomized ranking protocol on the k-channel RN. Our protocol solves the ranking problem, with high probability, in O(
Jacir Luiz BORDIM Yasuaki ITO Koji NAKANO
In this work we present an energy efficient leader election protocol for anonymous radio network populated with n mobile stations. Previously, Nakano and Olariu have presented a leader election protocol that terminates, with probability exceeding 1-
Camille VUILLAUME Katsuyuki OKEYA Tsuyoshi TAKAGI
Koblitz curves belong to a special class of binary curves on which the scalar multiplication can be computed very efficiently. For this reason, they are suitable candidates for implementations on low-end processors. However, such devices are often vulnerable to side channel attacks. In this paper, we propose a new countermeasure against side channel attacks on Koblitz curves, which utilizes a fixed-pattern recoding to defeat simple power analysis. We show that in practical cases, the recoding can be performed from left to right, and can be easily stored or even randomly generated.
Given a graph G=(V,E), a set of vertices S ⊆ V covers v ∈ V if the edge connectivity between S and v is at least a given number k. Vertices in S are called sources. The source location problem is a problem of finding a minimum-size source set covering all vertices of a given graph. This paper presents a new variation of the problem, called maximum-cover source-location problem, which finds a source set S with a given size p, maximizing the sum of the weight of vertices covered by S. It presents an O(np + m + nlog n)-time algorithm for k=2, where n=|V| and m=|E|. Especially it runs linear time if G is connected. This algorithm uses a subroutine for finding a subtree with the maximum weight among p-leaf trees of a given vertex-weighted tree. For the problem we give a greedy-based linear-time algorithm, which is an extension of the linear-time algorithm for finding a longest path of a given tree presented by E. W. Dijkstra around 1960. Moreover, we show some polynomial solvable cases, e.g., a given graph is a tree or (k-1)-edge-connected, and NP-hard cases, e.g., a vertex-cost function is given or G is a digraph.
David AVIS Jun HASEGAWA Yosuke KIKUCHI Yuuya SASAKI
This paper deals with graph colouring games, an example of pseudo-telepathy, in which two players can convince a verifier that a graph G is c-colourable where c is less than the chromatic number of the graph. They win the game if they convince the verifier. It is known that the players cannot win if they share only classical information, but they can win in some cases by sharing entanglement. The smallest known graph where the players win in the quantum setting, but not in the classical setting, was found by Galliard, Tapp and Wolf and has 32,768 vertices. It is a connected component of the Hadamard graph GN with N=c=16. Their protocol applies only to Hadamard graphs where N is a power of 2. We propose a protocol that applies to all Hadamard graphs. Combined with a result of Frankl, this shows that the players can win on any induced subgraph of G12 having 1609 vertices, with c=12. Moreover combined with a result of Godsil and Newman, our result shows that all Hadamard graphs GN (N ≥ 12) and c=N yield pseudo-telepathy games.
Mitsugu IWAMOTO Lei WANG Kazuki YONEYAMA Noboru KUNIHIRO Kazuo OHTA
In this paper, a method is proposed to construct a visual secret sharing (VSS) scheme for multiple secret images in which each share can be rotated with 180 degrees in decryption. The proposed VSS scheme can encrypt more number of secret images compared with the normal VSS schemes. Furthermore, the proposed technique can be applied to the VSS scheme that allows to turn over some shares in decryption. From the theoretical point of view, it is interesting to note that such VSS schemes cannot be obtained from so-called basis matrices straightforwardly.
Rie SHIGETOMI Akira OTSUKA Jun FURUKAWA Keith MARTIN Hideki IMAI
The first refreshable anonymous token scheme proposed in [1] enables one to provide services in such a way that each of its users is allowed to enjoy only a fixed number of services at the same time. In this paper, we show that the scheme in [1] is insecure and propose a provably secure refreshable partial anonymous token scheme which is a generalization of the previous scheme. The new scheme has an additional ability to control the anonymity level of users. We also propose a formal model and security requirements of the new scheme.
Ayami SUZUKA Ryuhei MIYASHIRO Akiko YOSHISE Tomomi MATSUI
Suppose that we have a timetable of a round-robin tournament with a number of teams, and distances among their homes. The home-away assignment problem is to find a home-away assignment that minimizes the total traveling distance of the teams. We propose a formulation of the home-away assignment problem as an integer program, and a rounding algorithm based on Bertsimas, Teo and Vohra's dependent randomized rounding method [2]. Computational experiments show that our method quickly generates feasible solutions close to optimal.
Tsunehiro YOSHINAGA Jianliang XU Katsushi INOUE
This paper investigates the accepting powers of two-way alternating Turing machines (2ATM's) with only existential (universal) states which have inkdots and sublogarithmic space. It is shown that for sublogarithmic space-bounded computations, (i) multi-inkdot 2ATM's with only existential states and the ones with only universal states are incomparable, (ii) k-inkdot 2ATM's are better than k-inkdot 2ATM's with only existential (universal) states, k ≥ 0, and (iii) the class of sets accepted by multi-inkdot 2ATM's with only existential (universal) states is not closed under complementation.
Noboru KUNIHIRO Wataru ABE Kazuo OHTA
Maurer and Yacobi proposed an ID-Based key distribution scheme in 1991. In this scheme, the private key for each user is generated by solving discrete logarithm problem. We examine the realizability of this scheme. We show that this scheme can be practical by appropriate parameter setting.
For a property π on graphs, the edge-contraction problem with respect to π is defined as a problem of finding a set of edges of minimum cardinality whose contraction results in a graph satisfying the property π. This paper gives a lower bound for the approximation ratio for the problem for any property π that is hereditary on contractions and determined by biconnected components.
Magnetoencephalography (MEG) is a method to measure a magnetic field generated by electrical neural activity in a brain, and it plays increasingly important role in clinical diagnoses and neurophysiological studies. However, in MEG analysis, the estimation of the brain activity, of the electric current density distribution in a brain which is represented by current dipoles, is problematic. A spatial filter and subsequent reconstruction of the current density distribution estimated by the spatial filter (spatial filtered reconstruction: SFR) are proposed. The spatial filter is designed to be used without prior or temporal information. The proposed spatial filter ensures that it concentrates the current distribution around the activated sources in the conductor. The current distribution estimated by the spatial filter is reconstructed by multiple linear regression. Redundant current dipoles are eliminated, and the current distribution is optimized in the sense of the Mallows Cp statistic. Numerical studies are demonstrated and show successful estimation by SFR in multiple-dipole cases. In single-dipole cases with SNRs of 101 and more, the location of the true dipole was successfully estimated for about 80% of the simulations. The reconstruction with multiple linear regression corrected the location of the maximum current density estimated by the proposed spatial filtering. The dipole on the correct position contributes to more than 70% of the total dipoles in the estimated current distribution in those cases. These results show that the current distribution is effectively localized by SFR. We also investigate the differences among SFR, the LCMV (linearly constrained minimum variance) beamformer and the SAM (synthetic aperture magnetometry), the representatives of spatial filters in MEG analyses. It is indicated that spatial resolution is improved by avoiding dependence on temporal information.
Feng LI Jianming LU Xueqin ZHAO Takashi YAHAGI
In this paper, we study the problem of perfect tracking control of nonminimum phase systems in magnetic levitation system. Generally, perfect tracking control schemes cannot be applied to nonminimum phase plants because of unstable pole-zero cancellations. Although the method of state matching using multirate feedforward control to realize perfect tracking control have been proposed, the oscillation restraint and the feasibility in nonminimum phase system cannot be satisfied at same time. We propose a method using the difference of state variables to generate a smooth desired state variable trajectory in the discrete-time systems. The techniques we proposed are applicable to nonminimum phase discrete-time systems and the oscillations between the sampling points are well restrained. We will show that the structure of the proposed perfect tracking controller is very simple and clear. Finally, computer simulations and experiment results based on magnetic levitation apparatus are presented.
Chien-Hsing SU Cheng-Sea HUANG Kuang-Yow LIAN
A new control scheme is proposed to improve the system performance for discrete-time fuzzy systems by tuning control grade functions using neural networks. According to a systematic method of constructing the exact Takagi-Sugeno (T-S) fuzzy model, the system uncertainty is considered to affect the membership functions. Then, the grade functions, resulting from the membership functions of the control rules, are tuned by a back-propagation network. On the other hand, the feedback gains of the control rules are determined by solving a set of LMIs which satisfy sufficient conditions of the closed-loop stability. As a result, both stability guarantee and better performance are concluded. The scheme applied to a truck-trailer system is verified by satisfactory simulation results.
Eduard A. JORSWIECK Holger BOCHE
The average performance of a single-user MIMO system under spatially correlated fading and with different types of CSI at the transmitter and with perfect CSI at the receiver was studied in recent work. In contrast to analyzing a single performance metric, e.g. the average mutual information or the average bit error rate, we study an arbitrary representative of the class of matrix-monotone functions. Since the average mutual information as well as the average normalized MSE belong to that class, this universal class of performance functions brings together the information theoretic and signal processing performance metric. We use Lowner's representation of operator monotone functions in order to derive the optimum transmission strategies as well as to characterize the impact of correlation on the average performance. Many recent results derived for average mutual information generalize to arbitrary matrix-monotone performance functions, e.g. the optimal transmit strategy without CSI at the transmitter is equal power allocation. The average performance without CSI is a Schur-concave function with respect to transmit and receive correlation. In addition to this, we derive the optimal transmission strategy with long-term statistics knowledge at the transmitter and propose an efficient iterative algorithm. The beamforming-range is the SNR range in which only one data stream spatially multiplexed achieves the maximum average performance. This range is important since it has a simple receiver structure and well known channel coding. We entirely characterize the beamforming-range. Finally, we derive the generalized water-filling transmit strategy for perfect CSI and characterize its properties under channel correlation.
Software-Defined Radio (SDR) represents a major paradigm shift in the design of radios, allowing a large fraction of the functionality to be implemented through programmable signal processing devices, enabling the radio to change its operating parameters to accommodate new air interface, features and capabilities. However, the actual realization of innovative and software-reconfigurable receiver diversity at mobile handsets in intermediate frequency band to provide wide-ranging benefits, including more effective filtered result, less cost of the mixed channel access, improved capacity, better link reliability, and reduced power consumption, has been slowed down largely due to an absence of effective architecture reducing the complexity of adaptive combining algorithms. This paper proposes a novel reconfigurable architecture for adaptive space diversity at handsets in MC-CDMA (multicode code-division multiple-access) systems. The key to which is the development of a valid and effective alternative to the time-consuming multiplication operation and despreading acquisition. A software definable algorithm can become a multiplier-free architecture if it can restrict the weight factors to power-of-two values and repetitive gradient search procedure to contain shift operations and predicate functions. The results of numerical simulation and experimentation confirm the expectation that the constrained approach should perform comparably to, but not better than the traditional diversity algorithm. That is, the feasibility of SDR depends on its trading some performance for reduced computational complexity, improved area efficiency and less power consumption.
Ruen MEYLAN
Cenker ODEN Ay
n ERTUZUN Aytul ERÇ
L
In this paper, a 2-D iteratively reweighted least squares lattice algorithm, which is robust to the outliers, is introduced and is applied to defect detection problem in textured images. First, the philosophy of using different optimization functions that results in weighted least squares solution in the theory of 1-D robust regression is extended to 2-D. Then a new algorithm is derived which combines 2-D robust regression concepts with the 2-D recursive least squares lattice algorithm. With this approach, whatever the probability distribution of the prediction error may be, small weights are assigned to the outliers so that the least squares algorithm will be less sensitive to the outliers. Implementation of the proposed iteratively reweighted least squares lattice algorithm to the problem of defect detection in textured images is then considered. The performance evaluation, in terms of defect detection rate, demonstrates the importance of the proposed algorithm in reducing the effect of the outliers that generally correspond to false alarms in classification of textures as defective or nondefective.
Kiyotaka KOHNO Mitsuru KAWAMOTO Asoke K. NANDI Yujiro INOUYE
The present letter deals with the blind equalization problem of a single-input single-output infinite impulse response (SISO-IIR) channel with additive Gaussian noise. To solve the problem, we propose a new criterion for maximizing constrainedly a fourth-order cumulant. The algorithms derived from the criterion have such a novel property that even if Gaussian noise is added to the output of the channel, an effective zero-forcing (ZF) equalizer can be obtained with as little influence of Gaussian noise as possible. To show the validity of the proposed criterion, some simulation results are presented.
Based on recent results for 2-D continuous-discrete systems, this paper develops 2-D Laplace-z transform, which can be used to analyze 2-D continuous-discrete signals and system in Laplace-z hybrid domain. Current 1-D Laplace transformation and z transform can be combined into the new 2-D s-z transform. However, 2-D s-z transformation is not a simple extension of 1-D transform, in 2-D case, we need consider the 2-D boundary conditions which don't occur in 1-D case. The hybrid 2-D definitions and theorems are given in the paper. To verify the results of this paper, we also derived a numerical inverse 2-D Laplace-z transform, applying it to show the 2-D pulse response of a stable 2-D continuous-discrete system.
Hidemasa KUBOTA Yuichi TANJI Takayuki WATANABE Hideki ASAI
In this paper, we show the generalized method of the time-domain circuit simulation based on LIM. Our method is applicable to any structure of circuits by combination with the SPICE-like method. In order to show the validity and efficiency of our method, an example circuit is simulated and the proposed method is compared with the conventional ones.
An improved genetic algorithm for solving the graph planarization problem is presented. The improved genetic algorithm which is designed to embed a graph on a plane, performs crossover and mutation conditionally instead of probability. The improved genetic algorithm is verified by a large number of simulation runs and compared with other algorithms. The experimental results show that the improved genetic algorithm performs remarkably well and outperforms its competitors.
Haibin KAN Xuefei LI Hong SHEN
In this letter, we discussed some properties of characteristic generators for a finite Abelian group code, proved that any two characteristic generators can not start (end) at the same position and have the same order of the starting (ending) components simultaneously, and that the number of all characteristic generators can be directly computed from the group code itself. These properties are exactly the generalization of the corresponding trellis properties of a linear code over a field.
Byungjun BAE Joungil YUN Chunghyun AHN Soo-In LEE Kyu-Ik SOHNG
This paper briefly introduces the T-DMB standard based on Eureka-147 DAB and presents a new T-DMB transmission system, which uses a device called the Ensemble Remultiplexer, for mobile multimedia broadcasting service. And we verify the T-DMB standard by using the new transmission system with commercial equipment in the laboratory and in the field as moving on a car in high speed around urban districts surrounded by high buildings.