In a display system with a line-of-gaze (LOG) controller, it is difficult to make the directions and motions of a LOG-controlled object coincide as closely as possible in the display with the user's intended LOG-directions and motions. This is because LOG behavior is not only smooth, but also saccadic due to the problem of involuntary eye movement. This article introduces a flexible on-line LOG-control scheme to realize nearly perfect LOG operation. Using a mesh-wise cursor pattern, the first visual experiment elucidates subjectively that a Kalman Filter (KF) for smoothing and predicting is effective in filtering out macro-saccadic changes of the LOG and in predicting sudden changes of the saccade while movement is in progress. It must be assumed that the LOG trajectory can be described by a linear position-velocity-acceleration approximation of Sklansky Model (SM). Furthermore, the second experiment uses a four-point pattern and simulations to scrutinize the two physical properties of velocity and direction-changes of the LOG in order to quantitatively and efficiently resolve "moving" and "gazing". In order to greatly reduce the number of LOG-small-position changes while gazing, the proposed Gaze-Holding algorithm (GH) with a gaze-potential function is combined with the KF. This algorithm allows the occurrence frequency of the micro-saccade to be reduced from approximately 25 Hz to 1 or 2 Hz. This great reduction in the frequency of the LOG-controlled object moves is necessary to achieve the user's desired LOG-response while gazing. Almost perfect LOG control is accomplished by the on-line SM+KF+GH scheme while either gazing or moving. A menu-selection task was conducted to verify the effectiveness of the proposed on-line LOG-control method.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hidetomo SAKAINO, Akira TOMONO, Fumio KISHINO, "A Kalman Filtering with a Gaze-Holding Algorithm for Intentionally Controlling a Displayed Object by the Line-of-Gaze" in IEICE TRANSACTIONS on Fundamentals,
vol. E76-A, no. 3, pp. 409-424, March 1993, doi: .
Abstract: In a display system with a line-of-gaze (LOG) controller, it is difficult to make the directions and motions of a LOG-controlled object coincide as closely as possible in the display with the user's intended LOG-directions and motions. This is because LOG behavior is not only smooth, but also saccadic due to the problem of involuntary eye movement. This article introduces a flexible on-line LOG-control scheme to realize nearly perfect LOG operation. Using a mesh-wise cursor pattern, the first visual experiment elucidates subjectively that a Kalman Filter (KF) for smoothing and predicting is effective in filtering out macro-saccadic changes of the LOG and in predicting sudden changes of the saccade while movement is in progress. It must be assumed that the LOG trajectory can be described by a linear position-velocity-acceleration approximation of Sklansky Model (SM). Furthermore, the second experiment uses a four-point pattern and simulations to scrutinize the two physical properties of velocity and direction-changes of the LOG in order to quantitatively and efficiently resolve "moving" and "gazing". In order to greatly reduce the number of LOG-small-position changes while gazing, the proposed Gaze-Holding algorithm (GH) with a gaze-potential function is combined with the KF. This algorithm allows the occurrence frequency of the micro-saccade to be reduced from approximately 25 Hz to 1 or 2 Hz. This great reduction in the frequency of the LOG-controlled object moves is necessary to achieve the user's desired LOG-response while gazing. Almost perfect LOG control is accomplished by the on-line SM+KF+GH scheme while either gazing or moving. A menu-selection task was conducted to verify the effectiveness of the proposed on-line LOG-control method.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/e76-a_3_409/_p
Copy
@ARTICLE{e76-a_3_409,
author={Hidetomo SAKAINO, Akira TOMONO, Fumio KISHINO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Kalman Filtering with a Gaze-Holding Algorithm for Intentionally Controlling a Displayed Object by the Line-of-Gaze},
year={1993},
volume={E76-A},
number={3},
pages={409-424},
abstract={In a display system with a line-of-gaze (LOG) controller, it is difficult to make the directions and motions of a LOG-controlled object coincide as closely as possible in the display with the user's intended LOG-directions and motions. This is because LOG behavior is not only smooth, but also saccadic due to the problem of involuntary eye movement. This article introduces a flexible on-line LOG-control scheme to realize nearly perfect LOG operation. Using a mesh-wise cursor pattern, the first visual experiment elucidates subjectively that a Kalman Filter (KF) for smoothing and predicting is effective in filtering out macro-saccadic changes of the LOG and in predicting sudden changes of the saccade while movement is in progress. It must be assumed that the LOG trajectory can be described by a linear position-velocity-acceleration approximation of Sklansky Model (SM). Furthermore, the second experiment uses a four-point pattern and simulations to scrutinize the two physical properties of velocity and direction-changes of the LOG in order to quantitatively and efficiently resolve "moving" and "gazing". In order to greatly reduce the number of LOG-small-position changes while gazing, the proposed Gaze-Holding algorithm (GH) with a gaze-potential function is combined with the KF. This algorithm allows the occurrence frequency of the micro-saccade to be reduced from approximately 25 Hz to 1 or 2 Hz. This great reduction in the frequency of the LOG-controlled object moves is necessary to achieve the user's desired LOG-response while gazing. Almost perfect LOG control is accomplished by the on-line SM+KF+GH scheme while either gazing or moving. A menu-selection task was conducted to verify the effectiveness of the proposed on-line LOG-control method.},
keywords={},
doi={},
ISSN={},
month={March},}
Copy
TY - JOUR
TI - A Kalman Filtering with a Gaze-Holding Algorithm for Intentionally Controlling a Displayed Object by the Line-of-Gaze
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 409
EP - 424
AU - Hidetomo SAKAINO
AU - Akira TOMONO
AU - Fumio KISHINO
PY - 1993
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E76-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 1993
AB - In a display system with a line-of-gaze (LOG) controller, it is difficult to make the directions and motions of a LOG-controlled object coincide as closely as possible in the display with the user's intended LOG-directions and motions. This is because LOG behavior is not only smooth, but also saccadic due to the problem of involuntary eye movement. This article introduces a flexible on-line LOG-control scheme to realize nearly perfect LOG operation. Using a mesh-wise cursor pattern, the first visual experiment elucidates subjectively that a Kalman Filter (KF) for smoothing and predicting is effective in filtering out macro-saccadic changes of the LOG and in predicting sudden changes of the saccade while movement is in progress. It must be assumed that the LOG trajectory can be described by a linear position-velocity-acceleration approximation of Sklansky Model (SM). Furthermore, the second experiment uses a four-point pattern and simulations to scrutinize the two physical properties of velocity and direction-changes of the LOG in order to quantitatively and efficiently resolve "moving" and "gazing". In order to greatly reduce the number of LOG-small-position changes while gazing, the proposed Gaze-Holding algorithm (GH) with a gaze-potential function is combined with the KF. This algorithm allows the occurrence frequency of the micro-saccade to be reduced from approximately 25 Hz to 1 or 2 Hz. This great reduction in the frequency of the LOG-controlled object moves is necessary to achieve the user's desired LOG-response while gazing. Almost perfect LOG control is accomplished by the on-line SM+KF+GH scheme while either gazing or moving. A menu-selection task was conducted to verify the effectiveness of the proposed on-line LOG-control method.
ER -