In this paper, we introduce an LDPC decoder design for decoding a length-672 multi-rate code adopted in IEEE 802.15.3c standard. The proposed decoder features high performances in both data rate and power efficiency. A macro-layer level fully parallel layered decoding architecture is proposed to support the throughput requirement in the standard. For the proposed decoder, it takes only 4 clock cycles to process one decoding iteration. While parallelism increases, the chip routing congestion problem becomes more severe because a more complicated interconnection network is needed for message passing during the decoding process. This problem is nicely solved by our proposed efficient message permutation scheme utilizing exploited parity check matrix features. The proposed message permutation network features high compatibility and zero-logic-gate VLSI implementation, which contribute to the remarkable improvements in both area utilization ratio and total gate count. Meanwhile, frame-level pipeline decoding is applied in the design to shorten the critical path. To verify the above techniques, the proposed decoder is implemented on a chip fabricated using Fujitsu 65 nm 1P12L LVT CMOS process. The chip occupies a core area of 1.30 mm2 with area utilization ratio 86.3%. According to the measurement results, working at 1.2 V, 400 MHz and 10 iterations the proposed decoder delivers a 6.72 Gb/s data throughput and dissipates a power of 537.6 mW, resulting in an energy efficiency 8.0 pJ/bit/iteration. Moreover, a decoder of the same architecture but with no pipeline stage for low-profile application is also implemented and evaluated at post-layout level.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Zhixiang CHEN, Xiao PENG, Xiongxin ZHAO, Leona OKAMURA, Dajiang ZHOU, Satoshi GOTO, "A 6.72-Gb/s 8 pJ/bit/iteration IEEE 802.15.3c LDPC Decoder Chip" in IEICE TRANSACTIONS on Fundamentals,
vol. E94-A, no. 12, pp. 2587-2596, December 2011, doi: 10.1587/transfun.E94.A.2587.
Abstract: In this paper, we introduce an LDPC decoder design for decoding a length-672 multi-rate code adopted in IEEE 802.15.3c standard. The proposed decoder features high performances in both data rate and power efficiency. A macro-layer level fully parallel layered decoding architecture is proposed to support the throughput requirement in the standard. For the proposed decoder, it takes only 4 clock cycles to process one decoding iteration. While parallelism increases, the chip routing congestion problem becomes more severe because a more complicated interconnection network is needed for message passing during the decoding process. This problem is nicely solved by our proposed efficient message permutation scheme utilizing exploited parity check matrix features. The proposed message permutation network features high compatibility and zero-logic-gate VLSI implementation, which contribute to the remarkable improvements in both area utilization ratio and total gate count. Meanwhile, frame-level pipeline decoding is applied in the design to shorten the critical path. To verify the above techniques, the proposed decoder is implemented on a chip fabricated using Fujitsu 65 nm 1P12L LVT CMOS process. The chip occupies a core area of 1.30 mm2 with area utilization ratio 86.3%. According to the measurement results, working at 1.2 V, 400 MHz and 10 iterations the proposed decoder delivers a 6.72 Gb/s data throughput and dissipates a power of 537.6 mW, resulting in an energy efficiency 8.0 pJ/bit/iteration. Moreover, a decoder of the same architecture but with no pipeline stage for low-profile application is also implemented and evaluated at post-layout level.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E94.A.2587/_p
Copy
@ARTICLE{e94-a_12_2587,
author={Zhixiang CHEN, Xiao PENG, Xiongxin ZHAO, Leona OKAMURA, Dajiang ZHOU, Satoshi GOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A 6.72-Gb/s 8 pJ/bit/iteration IEEE 802.15.3c LDPC Decoder Chip},
year={2011},
volume={E94-A},
number={12},
pages={2587-2596},
abstract={In this paper, we introduce an LDPC decoder design for decoding a length-672 multi-rate code adopted in IEEE 802.15.3c standard. The proposed decoder features high performances in both data rate and power efficiency. A macro-layer level fully parallel layered decoding architecture is proposed to support the throughput requirement in the standard. For the proposed decoder, it takes only 4 clock cycles to process one decoding iteration. While parallelism increases, the chip routing congestion problem becomes more severe because a more complicated interconnection network is needed for message passing during the decoding process. This problem is nicely solved by our proposed efficient message permutation scheme utilizing exploited parity check matrix features. The proposed message permutation network features high compatibility and zero-logic-gate VLSI implementation, which contribute to the remarkable improvements in both area utilization ratio and total gate count. Meanwhile, frame-level pipeline decoding is applied in the design to shorten the critical path. To verify the above techniques, the proposed decoder is implemented on a chip fabricated using Fujitsu 65 nm 1P12L LVT CMOS process. The chip occupies a core area of 1.30 mm2 with area utilization ratio 86.3%. According to the measurement results, working at 1.2 V, 400 MHz and 10 iterations the proposed decoder delivers a 6.72 Gb/s data throughput and dissipates a power of 537.6 mW, resulting in an energy efficiency 8.0 pJ/bit/iteration. Moreover, a decoder of the same architecture but with no pipeline stage for low-profile application is also implemented and evaluated at post-layout level.},
keywords={},
doi={10.1587/transfun.E94.A.2587},
ISSN={1745-1337},
month={December},}
Copy
TY - JOUR
TI - A 6.72-Gb/s 8 pJ/bit/iteration IEEE 802.15.3c LDPC Decoder Chip
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2587
EP - 2596
AU - Zhixiang CHEN
AU - Xiao PENG
AU - Xiongxin ZHAO
AU - Leona OKAMURA
AU - Dajiang ZHOU
AU - Satoshi GOTO
PY - 2011
DO - 10.1587/transfun.E94.A.2587
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E94-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2011
AB - In this paper, we introduce an LDPC decoder design for decoding a length-672 multi-rate code adopted in IEEE 802.15.3c standard. The proposed decoder features high performances in both data rate and power efficiency. A macro-layer level fully parallel layered decoding architecture is proposed to support the throughput requirement in the standard. For the proposed decoder, it takes only 4 clock cycles to process one decoding iteration. While parallelism increases, the chip routing congestion problem becomes more severe because a more complicated interconnection network is needed for message passing during the decoding process. This problem is nicely solved by our proposed efficient message permutation scheme utilizing exploited parity check matrix features. The proposed message permutation network features high compatibility and zero-logic-gate VLSI implementation, which contribute to the remarkable improvements in both area utilization ratio and total gate count. Meanwhile, frame-level pipeline decoding is applied in the design to shorten the critical path. To verify the above techniques, the proposed decoder is implemented on a chip fabricated using Fujitsu 65 nm 1P12L LVT CMOS process. The chip occupies a core area of 1.30 mm2 with area utilization ratio 86.3%. According to the measurement results, working at 1.2 V, 400 MHz and 10 iterations the proposed decoder delivers a 6.72 Gb/s data throughput and dissipates a power of 537.6 mW, resulting in an energy efficiency 8.0 pJ/bit/iteration. Moreover, a decoder of the same architecture but with no pipeline stage for low-profile application is also implemented and evaluated at post-layout level.
ER -