In this paper, we propose a modified-error adaptive feedback active noise control (ANC) system using a linear prediction filter. The proposed ANC system is advantageous in terms of the rate of convergence, while maintaining stability, because it can reduce narrowband noise while suppressing disturbance, including wideband components. The estimation accuracy of the noise control filter in the conventional system is degraded because the disturbance corrupts the input signal to the noise control filter. A solution of this problem is to utilize a linear prediction filter. The linear prediction filter is utilized for the modified-error feedback ANC system to suppress the wideband disturbance because the linear prediction filter can separate narrowband and wideband noise. Suppressing wideband noise is important for the head-mounted ANC system we have already proposed for reducing the noise from a magnetic resonance imaging (MRI) device because the error microphones are located near the user's ears and the user's voice consequently corrupts the input signal to the noise control filter. Some simulation and experimental results obtained using a digital signal processor (DSP) demonstrate that the proposed feedback ANC system is superior to a conventional feedback ANC system in terms of the estimation accuracy and the rate of convergence of the noise control filter.
Nobuhiro MIYAZAKI
Kansai University
Yoshinobu KAJIKAWA
Kansai University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Nobuhiro MIYAZAKI, Yoshinobu KAJIKAWA, "Modified-Error Adaptive Feedback Active Noise Control System Using Linear Prediction Filter" in IEICE TRANSACTIONS on Fundamentals,
vol. E97-A, no. 10, pp. 2021-2032, October 2014, doi: 10.1587/transfun.E97.A.2021.
Abstract: In this paper, we propose a modified-error adaptive feedback active noise control (ANC) system using a linear prediction filter. The proposed ANC system is advantageous in terms of the rate of convergence, while maintaining stability, because it can reduce narrowband noise while suppressing disturbance, including wideband components. The estimation accuracy of the noise control filter in the conventional system is degraded because the disturbance corrupts the input signal to the noise control filter. A solution of this problem is to utilize a linear prediction filter. The linear prediction filter is utilized for the modified-error feedback ANC system to suppress the wideband disturbance because the linear prediction filter can separate narrowband and wideband noise. Suppressing wideband noise is important for the head-mounted ANC system we have already proposed for reducing the noise from a magnetic resonance imaging (MRI) device because the error microphones are located near the user's ears and the user's voice consequently corrupts the input signal to the noise control filter. Some simulation and experimental results obtained using a digital signal processor (DSP) demonstrate that the proposed feedback ANC system is superior to a conventional feedback ANC system in terms of the estimation accuracy and the rate of convergence of the noise control filter.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E97.A.2021/_p
Copy
@ARTICLE{e97-a_10_2021,
author={Nobuhiro MIYAZAKI, Yoshinobu KAJIKAWA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Modified-Error Adaptive Feedback Active Noise Control System Using Linear Prediction Filter},
year={2014},
volume={E97-A},
number={10},
pages={2021-2032},
abstract={In this paper, we propose a modified-error adaptive feedback active noise control (ANC) system using a linear prediction filter. The proposed ANC system is advantageous in terms of the rate of convergence, while maintaining stability, because it can reduce narrowband noise while suppressing disturbance, including wideband components. The estimation accuracy of the noise control filter in the conventional system is degraded because the disturbance corrupts the input signal to the noise control filter. A solution of this problem is to utilize a linear prediction filter. The linear prediction filter is utilized for the modified-error feedback ANC system to suppress the wideband disturbance because the linear prediction filter can separate narrowband and wideband noise. Suppressing wideband noise is important for the head-mounted ANC system we have already proposed for reducing the noise from a magnetic resonance imaging (MRI) device because the error microphones are located near the user's ears and the user's voice consequently corrupts the input signal to the noise control filter. Some simulation and experimental results obtained using a digital signal processor (DSP) demonstrate that the proposed feedback ANC system is superior to a conventional feedback ANC system in terms of the estimation accuracy and the rate of convergence of the noise control filter.},
keywords={},
doi={10.1587/transfun.E97.A.2021},
ISSN={1745-1337},
month={October},}
Copy
TY - JOUR
TI - Modified-Error Adaptive Feedback Active Noise Control System Using Linear Prediction Filter
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2021
EP - 2032
AU - Nobuhiro MIYAZAKI
AU - Yoshinobu KAJIKAWA
PY - 2014
DO - 10.1587/transfun.E97.A.2021
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E97-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2014
AB - In this paper, we propose a modified-error adaptive feedback active noise control (ANC) system using a linear prediction filter. The proposed ANC system is advantageous in terms of the rate of convergence, while maintaining stability, because it can reduce narrowband noise while suppressing disturbance, including wideband components. The estimation accuracy of the noise control filter in the conventional system is degraded because the disturbance corrupts the input signal to the noise control filter. A solution of this problem is to utilize a linear prediction filter. The linear prediction filter is utilized for the modified-error feedback ANC system to suppress the wideband disturbance because the linear prediction filter can separate narrowband and wideband noise. Suppressing wideband noise is important for the head-mounted ANC system we have already proposed for reducing the noise from a magnetic resonance imaging (MRI) device because the error microphones are located near the user's ears and the user's voice consequently corrupts the input signal to the noise control filter. Some simulation and experimental results obtained using a digital signal processor (DSP) demonstrate that the proposed feedback ANC system is superior to a conventional feedback ANC system in terms of the estimation accuracy and the rate of convergence of the noise control filter.
ER -