It is the key concern for service providers that how a web service stands out among functionally similar services. QoS is a distinct and decisive factor in service selection among functionally similar services. Therefore, how to design services to meet customers' QoS requirements is an urgent problem for service providers. This paper proposes an approach using QFD (Quality Function Deployment) which is a quality methodology to transfer services' QoS requirements into services' design attribute characteristics. Fuzzy set is utilized to deal with subjective and vague assessments such as importance of QoS properties. TCI (Technical Competitive Index) is defined to compare the technical competitive capacity of a web service with those of other functionally similar services in the aspect of QoS. Optimization solutions of target values of service design attributes is determined by GA (Genetic Algorithm) in order to make the technical performance of the improved service higher than those of any other rival service products with the lowest improvement efforts. Finally, we evaluate candidate improvement solutions on cost-effectiveness. As the output of QFD process, the optimization targets and order of priority of service design attributes can be used as an important basis for developing and improving service products.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Gang WANG, Li ZHANG, Yonggang HUANG, Yan SUN, "Design of Competitive Web Services Using QFD for Satisfaction of QoS Requirements" in IEICE TRANSACTIONS on Information,
vol. E96-D, no. 3, pp. 634-642, March 2013, doi: 10.1587/transinf.E96.D.634.
Abstract: It is the key concern for service providers that how a web service stands out among functionally similar services. QoS is a distinct and decisive factor in service selection among functionally similar services. Therefore, how to design services to meet customers' QoS requirements is an urgent problem for service providers. This paper proposes an approach using QFD (Quality Function Deployment) which is a quality methodology to transfer services' QoS requirements into services' design attribute characteristics. Fuzzy set is utilized to deal with subjective and vague assessments such as importance of QoS properties. TCI (Technical Competitive Index) is defined to compare the technical competitive capacity of a web service with those of other functionally similar services in the aspect of QoS. Optimization solutions of target values of service design attributes is determined by GA (Genetic Algorithm) in order to make the technical performance of the improved service higher than those of any other rival service products with the lowest improvement efforts. Finally, we evaluate candidate improvement solutions on cost-effectiveness. As the output of QFD process, the optimization targets and order of priority of service design attributes can be used as an important basis for developing and improving service products.
URL: https://globals.ieice.org/en_transactions/information/10.1587/transinf.E96.D.634/_p
Copy
@ARTICLE{e96-d_3_634,
author={Gang WANG, Li ZHANG, Yonggang HUANG, Yan SUN, },
journal={IEICE TRANSACTIONS on Information},
title={Design of Competitive Web Services Using QFD for Satisfaction of QoS Requirements},
year={2013},
volume={E96-D},
number={3},
pages={634-642},
abstract={It is the key concern for service providers that how a web service stands out among functionally similar services. QoS is a distinct and decisive factor in service selection among functionally similar services. Therefore, how to design services to meet customers' QoS requirements is an urgent problem for service providers. This paper proposes an approach using QFD (Quality Function Deployment) which is a quality methodology to transfer services' QoS requirements into services' design attribute characteristics. Fuzzy set is utilized to deal with subjective and vague assessments such as importance of QoS properties. TCI (Technical Competitive Index) is defined to compare the technical competitive capacity of a web service with those of other functionally similar services in the aspect of QoS. Optimization solutions of target values of service design attributes is determined by GA (Genetic Algorithm) in order to make the technical performance of the improved service higher than those of any other rival service products with the lowest improvement efforts. Finally, we evaluate candidate improvement solutions on cost-effectiveness. As the output of QFD process, the optimization targets and order of priority of service design attributes can be used as an important basis for developing and improving service products.},
keywords={},
doi={10.1587/transinf.E96.D.634},
ISSN={1745-1361},
month={March},}
Copy
TY - JOUR
TI - Design of Competitive Web Services Using QFD for Satisfaction of QoS Requirements
T2 - IEICE TRANSACTIONS on Information
SP - 634
EP - 642
AU - Gang WANG
AU - Li ZHANG
AU - Yonggang HUANG
AU - Yan SUN
PY - 2013
DO - 10.1587/transinf.E96.D.634
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E96-D
IS - 3
JA - IEICE TRANSACTIONS on Information
Y1 - March 2013
AB - It is the key concern for service providers that how a web service stands out among functionally similar services. QoS is a distinct and decisive factor in service selection among functionally similar services. Therefore, how to design services to meet customers' QoS requirements is an urgent problem for service providers. This paper proposes an approach using QFD (Quality Function Deployment) which is a quality methodology to transfer services' QoS requirements into services' design attribute characteristics. Fuzzy set is utilized to deal with subjective and vague assessments such as importance of QoS properties. TCI (Technical Competitive Index) is defined to compare the technical competitive capacity of a web service with those of other functionally similar services in the aspect of QoS. Optimization solutions of target values of service design attributes is determined by GA (Genetic Algorithm) in order to make the technical performance of the improved service higher than those of any other rival service products with the lowest improvement efforts. Finally, we evaluate candidate improvement solutions on cost-effectiveness. As the output of QFD process, the optimization targets and order of priority of service design attributes can be used as an important basis for developing and improving service products.
ER -