1-7hit |
This paper explores virtual destination (VD)/virtual source (VS)-based available bit rate (ABR) flow control performance, targeting wireless asynchronous transfer mode (WATM) application that can incur long link-delays because of employing radio-medium sharing and/or radio-specific data link control schemes. As this paper reveals, the conventional VD/VS scheme has difficulty in sustaining satisfactory ABR performance, when it is applied to long-delay-causing WATM; it suffers from significant increase in the necessary buffer capacity. To ensure the ABR performance in WATM, this paper proposes a new VD/VS coupling scheme using a feed-forward congestion indication. The proposed scheme controls the allowed cell rate of a source end system in a feed-forward manner by predicting the queue length at the time the WATM-associated-round-trip ahead. Simulation results show that the proposed scheme exhibits excellent ABR performance with a long delay of the divided loop on the radio-link side. It is also verified that the proposed scheme is rather robust against uncertainty and/or time-variation regarding the predetermined radio link delay.
This paper proposes a new polling-based dynamic slot assignment (DSA) scheme. With the rapid progress of wireless access systems, wireless data communication will become more and more attractive. In wireless data communication, an efficient DSA scheme is required to enhance system throughput, since the capacity of radio links is often smaller than that of wired links. A polling-based DSA scheme is typically used in centralized slot assignment control systems. It, however, is difficult to assign the slots to the targeted mobile terminals in a fair-share manner if only a polling-based scheme is used, especially in unbalanced-traffic circumstances, as revealed later. To solve this problem, we propose the exponential decreasing and proportional increasing rate control as is employed in available bit rate (ABR) service in ATM so that fair slot assignment is achieved even in heavily-unbalanced-traffic circumstances. Moreover, so that an AP operating with a large number of MTs can avoid long transmission delays, a polling-based resource request scheme with random access is featured in a new algorithm. Simulations verify that the proposed scheme offers fair slot assignment for each user while maintaining high throughput and short delay performance.
Fumihiro INOUE Takayuki NISHIO Masahiro MORIKURA Koji YAMAMOTO Fusao NUNO Takatoshi SUGIYAMA
The problem of coexistence between IEEE 802.11g based wireless LANs (WLANs) and IEEE 802.15.4 based wireless personal area networks (WPANs) in the 2.4GHz band is an important issue for the operation of a home energy management system (HEMS) for smart grids. This paper proposes a coexistence scheme that is called a Hybrid station aided coexistence (HYSAC) scheme to solve this problem. This scheme employs a hybrid-station (H-STA) that possesses two types of network device functions. The scheme improves the data transmission quality of the WPAN devices which transmit energy management information such as power consumption. The proposed HYSAC scheme employs WLAN control frames, which are used to assign WPAN system traffic resources. Moreover, we propose a coexistence method to achieve excellent WLAN throughput where multiple WPANs coexist with a WLAN. We theoretically derive the performance of the proposed scheme by considering the QoS support in WLAN and show that the results of the simulation and theoretical analysis are in good agreement. The numerical results show that the HYSAC scheme decreases the beacon loss rate of WPAN to less than 1% when the WLAN system consists of 10 STAs under saturated traffic conditions. Furthermore, the WLAN throughput of the proposed synchronization method is shown to be 30.6% higher than that of the HYSAC scheme without synchronization when the WLAN that consists of 10 STAs coexists with four WPANs.
Yoshitaka SHIMIZU Fusao NUNO Kazuji WATANABE
Wide area ubiquitous wireless networks, which consist of access points (APs) connected to the fixed network and a great many wireless terminals (WTs), can offer a wide range of applications everywhere. In order to enhance network performance, we need to collect different kinds of data from as many WTs as possible; each AP must be capable of accommodating more than 103 WTs. This requirement can be achieved by employing DSA, a typical centralized media access control scheme, since it has high resource utilization efficiency. In this paper, we propose a novel DSA scheme that employs three new techniques to enhance throughput performance; (1) considering that most terminals tend to send data periodically, it employs both polling-based schemes, i.e. request-polling and data-polling, and a random access scheme. (2) In order to enhance bandwidth utilization effectiveness by polling, the polling timing is decided according to the data generation timing. (3) The AP decides the polled data size according to the latest distribution of data size and polls the WT for the data directly. If the data-polling size can not be determined with confidence, the AP uses request-polling instead of data-polling. Simulations verify that the proposed scheme offers better transmission performance than the existing schemes.
Takashi HIROSE Fusao NUNO Masashi NAKATSUGAWA
This paper presents wireless systems for use in disaster recovery operations. The Great East Japan Earthquake of March 11, 2011 reinforced the importance of communications in, to, and between disaster areas as lifelines. It also revealed that conventional wireless systems used for disaster recovery need to be renovated to cope with technological changes and to provide their services with easier operations. To address this need we have developed new systems, which include a relay wireless system, subscriber wireless systems, business radio systems, and satellite communication systems. They will be chosen and used depending on the situations in disaster areas as well as on the required services.
Yuki SANGENYA Fumihiro INOUE Masahiro MORIKURA Koji YAMAMOTO Fusao NUNO Takatoshi SUGIYAMA
In this paper, a priority control problem between uplink and downlink flows in IEEE 802.11 wireless LANs is considered. The minimum contention window size (CWmin) has a nonnegative integer value. CWmin control scheme is one of the solutions for priority control to achieve the fairness between links. However, it has the problem that CWmin control scheme cannot achieve precise priority control when the CWmin values become small. As the solution of this problem, this paper proposes a new CWmin control method called a virtual continuous CWmin control (VCCC) scheme. The key concept of this method is that it involves the use of small and large CWmin values probabilistically. The proposed scheme realizes the expected value of CWmin as a nonnegative real number and solves the precise priority control problem. Moreover, we proposed a theoretical analysis model for the proposed VCCC scheme. Computer simulation results show that the proposed scheme improves the throughput performance and achieves fairness between the uplink and the downlink flows in an infrastructure mode of the IEEE 802.11 based wireless LAN. Throughput of the proposed scheme is 31% higher than that of a conventional scheme when the number of wireless stations is 18. The difference between the theoretical analysis results and computer simulation results of the throughput is within 1% when the number of STAs is less than 10.
Tomohiro SEKI Fusao NUNO Takeo ATSUGI Masahiro UMEHIRA Junji SATO Takashi ENOKI
This paper first presents an active integrated antenna configuration designed for broadband mobile wireless access systems using the 25-GHz band. This active integrated antenna comprises a microstrip antenna array and RF front-end circuits adopting spatial power combining schemes for reduced power consumption of the power amplifiers. Furthermore, the antenna and RF circuits are integrated into each side of a thick copper backing plate and both are connected through microstrip line /slot transitions. The developed active integrated antenna achieves the output power of 14.6 dBm and a noise figure of less than 5 dB. The wireless system using the developed active integrated antenna achieves a 6-dB improvement in the packet error rate compared to that using a passive antenna with the same array design as the active integrated antenna. Furthermore, we obtained the first license of the active integrated antenna for commercial use in high-speed wireless communication systems in Japan.