Makoto UMEUCHI Atsushi OHTA Masahiro UMEHIRA
It is indispensable to establish a multi-access protocol and resource management technique that can assure transmission quality and efficiently utilize the radio frequency spectrum for ATM-based wireless access systems. This paper proposes dynamic time-slot assignment schemes for the forward link from a user to a central station (CS): (1) the centralized assignment and release scheme (CAR), and (2) the centralized-assignment and autonomous-release scheme (CAAR). In the proposed schemes, a central station dynamically assigns time-slots based on traffic information obtained by monitoring the input traffic in each radio module (RM). In addition, forward protection is used to prevent false-release of assigned time-slots. Performance evaluations have been carried out by analysis as well as computer simulations. They show that the proposed schemes achieve good performance in delay, link stability, and utilization efficiency of radio resources with an optimized number of forward protection steps.
Masahiro UMEHIRA Kiyoshi KOBAYASHI Yoshitsugu YASUI Masato TANAKA Ryutaro SUZUKI Hideyuki SHINONAGA Nobuyuki KAWAI
Current trend in telecommunications is "broadband" and "ubiquitous." To achieve this goal, satellite communications systems are expected to play an important role in cooperation with terrestrial communications systems. Along with the advancement of optical fiber transmission systems, the role of satellite communications was dramatically changed from long distance transmission to various applications utilizing unique features of satellite communications. This paper overviews recent Japanese R&D in satellite communications.
Motohiro TANABE Masahiro UMEHIRA Koichi ISHIHARA Yasushi TAKATORI
An OFDMA based channel access scheme is proposed for dynamic spectrum access to utilize frequency spectrum efficiently. Though the OFDMA based scheme is flexible enough to change the bandwidth and channel of the transmitted signals, the OFDMA signal has large PAPR (Peak to Average Power Ratio). In addition, if the OFDMA receiver does not use a filter to extract sub-carriers before FFT (Fast Fourier Transform) processing, the designated sub-carriers suffer large interference from the adjacent channel signals in the FFT processing on the receiving side. To solve the problems such as PAPR and adjacent channel interference encountered in the OFDMA based scheme, this paper proposes a novel dynamic channel access scheme using overlap FFT filter-bank based on single carrier modulation. It also shows performance evaluation results of the proposed scheme by computer simulation.
Takatoshi SUGIYAMA Satoshi KUROSAKI Daisei UCHIDA Yusuke ASAI Masahiro UMEHIRA
This paper describes implementation and performance evaluation of simple SDM-COFDM (Space Division Multiplexed-Coded Orthogonal Frequency Division Multiplexing) prototype over fading MIMO (Multi-Input Multi-Output) channel in order to achieve higher frequency utilization efficiency. It employs ZF (Zero Forcing) type detection scheme for SDM transmission to reduce hardware implementation complexity, where ZF type detection scheme needs to only multiply the received data by the estimated inverse propagation coefficient matrix at each OFDM subcarrier. Moreover, in order to improve the performance degradation due to the increase of the transmitted data length per frame in fast fading environments, the inverse matrix tracking using STC (Space-Time Coded) pilot is proposed and implemented in the prototype. Experimental results show that the prototype with 22 antennas achieves about 90% increase of the frequency utilization efficiency compared to the SISO (Single-Input Single-Output) transmission.
Takatoshi SUGIYAMA Masahiro UMEHIRA
This paper proposes a novel FEC (forward error correction) scheme for high-speed wireless systems aiming at mobile computing applications. The proposed scheme combines inner nonredundant error correction with outer parallel encoding random FEC for differentially detected QPSK (quadrature phase shift keying) signals. This paper, first, examines error patterns after the differential detection with nonredundant error correction and reveals that particular double symbol errors occur with relatively high probability. To improve the outer FEC performance degradation due to the double symbol errors, the proposed scheme uses I and Q channel serial to parallel conversion in the transmission side and parallel to serial conversion in the receiving side. As a result, it enables to use simple FEC for the outer parallel encoding random FEC without interleaving. Computer simulation results show the proposed scheme employing one bit correction BCH coding obtains a required Eb/No improvement of 1.2 dB at a Pe of 10-5 compared to that with the same memory size interleaving in an AWGN environment. Moreover, in a Rician fading environment where directional beam antennas are assumed to be used to improve the degradation due to severe multipath signals, an overall Eb/No improvement at Pe of 10-5 of 3.0 dB is achieved compared to simple differential detection when the condition of delay spread of 5 nsec, carrier to multipath signal power ratio of 20 dB and Doppler frequency at 20 GHz band of 150 Hz.
Tomoaki NAGAYAMA Shigeki TAKEDA Masahiro UMEHIRA Kenichi KAGOSHIMA Teruyuki MIYAJIMA
This paper proposes the use of two transmit and two receive antennas spaced at roughly the width of a human body to improve communication quality in the presence of shadowing by a human body in the 60GHz band. In the proposed method, the transmit power is divided between the two transmit antennas, and the receive antenna that provides the maximum receive level is then chosen. Although the receive level is reduced by 3dB, the maximum attenuation caused by human body shadowing is totally suppressed. The relationship between the antenna element spacing and the theoretical spacing based on the 1st. Fresnel zone theory is clarified. Experiments confirm that antenna spacing several centimeters wider than that given by the 1st. Fresnel zone theory is enough to attain a significant performance improvement.
Shigeki TAKEDA Kenichi KAGOSHIMA Masahiro UMEHIRA
This letter presents the safety confirmation system based on Near Field Communication (NFC) and Ultra High Frequency (UHF) band Radio Frequency IDentification (RFID) tags. Because these RFID tags can operate without the need for internal batteries, the proposed safety confirmation system is effective during large-scale disasters that cause loss of electricity and communication infrastructures. Sharing safety confirmation data between the NFC and UHF band RFID tags was studied to confirm the feasibility of the data sharing. The prototype of the proposed system was fabricated, confirming the feasibility of the proposed safety confirmation system.
Atsushi OHTA Masafumi YOSHIOKA Masahiro UMEHIRA
Automatic repeat request (ARQ) for wireless ATM (WATM) operating at 20 Mbit/s or higher is required to achieve high throughput performance as well as high transmission quality, i.e., low CLR (cell loss ratio). Selective Repeat (SR) and Go-Back-N (GBN) are typical ARQ schemes. Though SR-ARQ is superior to GBN-ARQ in throughput performance, the implementation complexity of SR-ARQ's control procedures is disadvantageous to its application to high-speed wireless systems. In addition, when PDU (protocol data unit) length on wireless link is short, the capacity for ARQ control messages can be significantly large. GBN-ARQ, on the other hand, cannot avoid serious throughput degradation due to fairly high BER caused by multipath fading and shadowing, though its implementation is simple. To solve the above-mentioned problems, this paper proposes a novel ARQ scheme named PRIME-ARQ (Partial selective Repeat superIMposEd on gbn ARQ). PRIME-ARQ achieves high throughput performance, almost equal to selective repeat ARQ, with a simple algorithm resulting in reduced implementation complexity for high speed operation. This paper describes the design, implementation, and performance of the proposed PRIME-ARQ. In addition, it shows the experimental results using an experimental PRIME-ARQ hardware processor and proto-type AWA equipment.
Motohiro TANABE Masahiro UMEHIRA
An OFDMA-based (Orthogonal Frequency Division Multiple Access-based) channel access scheme for dynamic spectrum access has the drawbacks of large PAPR (Peak to Average Power Ratio) and large ACI (Adjacent Channel Interference). To solve these problems, a flexible channel access scheme using an overlap FFT filter-bank was proposed based on single carrier modulation for dynamic spectrum access. In order to apply the overlap FFT filter-bank for dynamic spectrum access, it is necessary to clarify the performance of the overlap FFT filter-bank according to the design parameters since its frequency characteristics are critical for dynamic spectrum access applications. This paper analyzes the overlap FFT filter-bank and evaluates its performance such as frequency characteristics and ACI performance according to the design parameters.
Yoichi MATSUMOTO Takeyuki NAGURA Masahiro UMEHIRA
This paper proposes a differentially-coded-quadrature-phase-shift-keying (DQPSK) coherent demodulator using a new simultaneous carrier and bit-timing recovery scheme (SCBR). The new DQPSK SCBR (DSCBR) scheme works with a frequently used preamble, whose baseband signal alternates between two diagonal decision points, for example, a repeated bit-series of "1001." With the DSCBR scheme, the proposed demodulator achieves a significantly agile carrier and bit-timing recovery using an open-loop approach with a one-part preamble. To illustrate this, a preamble of 8 symbols is applicable with the Eb/No degradation from the theory over AWGN of 0.2 dB. It is also shown that the proposed demodulator achieves an improvement in the required Eb/No of more than 2 dB over differential detection over Ricean fading communication channels. The channels are modeled for wireless broadband communication systems with directional antennas or line of sight (LOS) paths. This paper concludes that the proposed demodulator is a strong candidate for receivers in wireles broadband communication systems.
Masahiro UMEHIRA Takatoshi SUGIYAMA
OFDM (Orthogonal Frequency Division Multiplexing) and CDMA (Code Division Multiple Access) are being used to enable broadband mobile wireless access under severe multipath fading in IMT-2000 and 5 GHz band WLAN (Wireless Local Area Networks), respectively. Both of them are expected to play important roles in future broadband mobile communication systems such as fourth generation cellular and next generation broadband WLAN. This paper overviews the features of OFDM and CDMA technologies and discusses their roles in future broadband mobile communication systems. It suggests an OFDM/CDMA approach combined with link adaptation and SDM (Space Division Multiplexing) over MIMO (Multiple Input Multiple Output) channel to achieve high transmission rate and to improve frequency utilization efficiency for high system capacity.
Satoshi KUROSAKI Yusuke ASAI Takatoshi SUGIYAMA Masahiro UMEHIRA
This paper proposes a space division multiplexed - coded orthogonal frequency division multiplexing (SDM-COFDM) scheme for multi-input multi-output (MIMO) based broadband wireless LANs. The proposed scheme reduces inter-channel interference in SDM transmission with a simple feed-forward canceller which multiplies the received symbols by the estimated propagation inverse matrix for each OFDM subcarrier. This paper proposes a new preamble pattern in order to improve power efficiency in the estimation of the propagation matrix. Moreover, the proposed likelihood-weighting scheme, which is based on signal-to-noise power ratio (SNR) of each OFDM subcarrier, improves the error correction performance of soft decision Viterbi decoding. Computer simulation shows that the proposed SDM-COFDM scheme with two transmitting/receiving antennas doubles the transmission rate without increasing the channel bandwidth and achieves almost the same PER performance as the conventional single-channel transmission in frequency selective fading environments. In particular, it achieves more than 100 Mbit/s per 20 MHz by using 64QAM with the coding rate of 3/4.
Ryoto KOIZUMI Xiaoyan WANG Masahiro UMEHIRA Ran SUN Shigeki TAKEDA
In recent years, high-resolution 77 GHz band automotive radar, which is indispensable for autonomous driving, has been extensively investigated. In the future, as vehicle-mounted CS (chirp sequence) radars become more and more popular, intensive inter-radar wideband interference will become a serious problem, which results in undesired miss detection of targets. To address this problem, learning-based wideband interference mitigation method has been proposed, and its feasibility has been validated by simulations. In this paper, firstly we evaluated the trade-off between interference mitigation performance and model training time of the learning-based interference mitigation method in a simulation environment. Secondly, we conducted extensive inter-radar interference experiments by using multiple 77 GHz MIMO (Multiple-Input and Multiple-output) CS radars and collected real-world interference data. Finally, we compared the performance of learning-based interference mitigation method with existing algorithm-based methods by real experimental data in terms of SINR (signal to interference plus noise ratio) and MAPE (mean absolute percentage error).
Xiaoyan WANG Ryoto KOIZUMI Masahiro UMEHIRA Ran SUN Shigeki TAKEDA
In recent times, there has been a significant focus on the development of automotive high-resolution 77 GHz CS (Chirp Sequence) radar, a technology essential for autonomous driving. However, with the increasing popularity of vehicle-mounted CS radars, the issue of intensive inter-radar wideband interference has emerged as a significant concern, leading to undesirable missed targe detection. To solve this problem, various algorithm and learning based approaches have been proposed for wideband interference suppression. In this study, we begin by conducting extensive simulations to assess the SINR (Signal to Interference plus Noise Ratio) and execution time of these approaches in highly demanding scenarios involving up to 7 interfering radars. Subsequently, to validate these approaches could generalize to real data, we perform comprehensive experiments on inter-radar interference using multiple 77 GHz MIMO (Multiple-Input and Multiple-output) CS radars. The collected real-world interference data is then utilized to validate the generalization capacity of these approaches in terms of SINR, missed detection rate, and false detection rate.
Hideaki MATSUE Masahiro UMEHIRA Takehiro MURASE
The ATM Wireless Access (AWA) System allows portable terminals such as notebook PCs to provide up to 10Mbits/s to each user. AWA will be one of the last hops of the fiber system; it seamlessly provides wireless terminals with most of the services available in the fiber system. A prototype is developed to confirm system realization and the technical feasibility of the radio transmission rate of 80 Mbit/s, the highest yet reported in wireless access systems, by employing ATM technology to support multimedia communication with different communication quality requirements. The prototype uses TDMA as the multiple access method. This paper proposes the system concept and technical issues of the AWA system. The design and performance of the AWA prototype are clarified. It is confirmed that the target performance of the prototype can be achieved and technical issues are feasible.
This paper describes reverse modulation carrier recovery with a tank-limiter for Offset QPSK (OQPSK) burst signals. Acquisition performance is discussed taking into account hardware implementation errors in the carrier recovery circuit. The results indicate hardware implementation errors cause a significant recovered carrier phase error during BTR (Bit Timing Recovery) of OQPSK burst signals. A phase error reduction technique by modifying the BTR code for OQPSK burst signals is proposed to improve the acquisition performance. Computer simulation and hardware experiments confirmed its improvement. The performance of a prototype OQPSK burst demodulator using the proposed carrier recovery scheme is also presented.
Yasuo SUZUKI Ichihiko TOYODA Masahiro UMEHIRA
The interference imposed on conventional narrow-band systems by impulse radio UWB (IR-UWB) signals is examined by simulations. The Dirac delta function is employed to model the IR-UWB signal to reduce simulation costs. The simulation results show that the statistical characteristics of this interference deviate from Gaussian noise when the frequency band of the narrow-band system includes a half multiple of the data symbol rate of the IR-UWB system. In the case of pulse-position-modulation UWB signals and biorthogonal-coded bipolar-modulation UWB signals, the performance degradation of the narrow-band system depends on the number of pulse positions and the number of orthogonal codes, respectively.
Hiroyuki SHIBA Takashi SHONO Yushi SHIRATO Ichihiko TOYODA Kazuhiro UEHARA Masahiro UMEHIRA
A software defined radio (SDR) prototype based on a multiprocessor architecture (MPA) is developed. Software for Japanese personal handy phone system (PHS) of a 2G mobile system, and IEEE 802.11 wireless LAN, which has much wider bandwidth than the 2G systems, is successfully implemented. Newly developed flexible-rate pre-/ post-processor (FR-PPP) achieves the flexibility and wideband performance that the platform needs. This paper shows the design of the SDR prototype and evaluates its performance by experiments that include PHS processor load and wireless LAN throughput characteristics and processor load.
Susumu YOSHIDA Fumiyuki ADACHI Jun HORIKOSHI Masahiro UMEHIRA Shingo OHMORI Yasutaka OGAWA Takahiko OGINO Tadashi FUJINO Yukitsuna FURUYA Koichi HONMA Yasushi YAMAO Yoshihide YAMADA Fumio WATANABE
Yoichi MATSUMOTO Masahiro UMEHIRA
This paper presents a new offset-quadrature-phase-shift-keying (OQPSK) coherent demodulation scheme for wireless asynchronous transfer mode (WATM) systems that premise the Ricean fading communication channels (e.g., typically with derectional antennas). The presented demodulator is basically advanced from a simultaneous carrier and bit-timing recovery (SCBR) scheme by newly employing a phase compensated filter and a reverse-modulation scheme for OQPSK. This advancement aims to enhance the carrier phase tracking performance against the phase fluctuation due to the fading and/or the phase rotation caused by the carrier frequency error of the oscillator. Design consideration and performance evaluation of the demodulator are extensively carried out under Ricean fading channels typical of the WATM systems as well as additive white Gaussian noise (AWGN) channels. The evaluation ressults show that the advanced SCBR (ASCBR) scheme achieves a bit-error-rate/cell-error-rate (BER/CER) performance close to ideal coherent detection with a considerably short preamble, e.g., 8 symbols. Specifically, compared with differential detection (evaluated for QPSK with the hard-wired clock), the new coherent demodulator achieves a significant required Eb/No improvement, which becomes larger as the fading condition degrades. This paper concludes that the ASCBR scheme is a strong candidate for the Ricean-fading-premise WATM systems.