1-7hit |
This paper proposes a contourlet based adaptive watermarking for color images (CAWCI). A color image with RGB space is firstly converted to its YCbCr space equivalent; a luminance (Y) image and two chrominance (Cb and Cr) images are subsequently transformed into contourlet domain respectively; the watermark is embedded into the contourlet coefficients of the largest detail subbands of three images lastly. On the one hand, the embedded watermark is imperceptible because contrast sensitivity function and watermark visual mask are adopted in our CAWCI. On the other hand, the embedded watermark is very robust due to the spread specialty of Laplacian pyramid (LP) in contourlet transform. The corresponding watermarking detection algorithm is proposed to decide whether the watermark is present or not by exploiting the unique transform structure of LP. Experimental results show the validity of CAWCI in terms of both watermarking invisibility and watermarking robustness.
Yu YAO Yuena MA Jingjie LV Hao SONG Qiang FU
In this paper, a special class of two-generator quasi-twisted (QT) codes with index 2 will be presented. We explore the algebraic structure of the class of QT codes and the form of their Hermitian dual codes. A sufficient condition for self-orthogonality with Hermitian inner product is derived. Using the class of Hermitian self-orthogonal QT codes, we construct two new binary quantum codes [[70, 42, 7]]2, [[78, 30, 10]]2. According to Theorem 6 of Ref.[2], we further can get 9 new binary quantum codes. So a total of 11 new binary quantum codes are obtained and there are 10 quantum codes that can break the quantum Gilbert-Varshamov (GV) bound.
Zihao SONG Peng SONG Chao SHENG Wenming ZHENG Wenjing ZHANG Shaokai LI
Unsupervised Feature selection is an important dimensionality reduction technique to cope with high-dimensional data. It does not require prior label information, and has recently attracted much attention. However, it cannot fully utilize the discriminative information of samples, which may affect the feature selection performance. To tackle this problem, in this letter, we propose a novel discriminative virtual label regression method (DVLR) for unsupervised feature selection. In DVLR, we develop a virtual label regression function to guide the subspace learning based feature selection, which can select more discriminative features. Moreover, a linear discriminant analysis (LDA) term is used to make the model be more discriminative. To further make the model be more robust and select more representative features, we impose the ℓ2,1-norm on the regression and feature selection terms. Finally, extensive experiments are carried out on several public datasets, and the results demonstrate that our proposed DVLR achieves better performance than several state-of-the-art unsupervised feature selection methods.
Contourlet transform (CT) is a new image representation method, which can efficiently represent contours and textures in images. However, CT is a kind of overcomplete transform with a redundancy factor of 4/3. If it is applied to image compression straightforwardly, the encoding bit-rate may increase to meet a given distortion. This fact baffles the coding community to develop CT-based image compression techniques with satisfactory performance. In this paper, we analyze the distribution of significant contourlet coefficients in different subbands and propose a new contourlet-based embedded image coding (CEIC) scheme on low bit-rate. The well-known wavelet-based embedded image coding (WEIC) algorithms such as EZW, SPIHT and SPECK can be easily integrated into the proposed scheme by constructing a virtual low frequency subband, modifying the coding framework of WEIC algorithms according to the structure of contourlet coefficients, and adopting a high-efficiency significant coefficient scanning scheme for CEIC scheme. The proposed CEIC scheme can provide an embedded bit-stream, which is desirable in heterogeneous networks. Our experiments demonstrate that the proposed scheme can achieve the better compression performance on low bit-rate. Furthermore, thanks to the contourlet adopted in the proposed scheme, more contours and textures in the coded images are preserved to ensure the superior subjective quality.
Ryu ISHII Kyosuke YAMASHITA Zihao SONG Yusuke SAKAI Tadanori TERUYA Takahiro MATSUDA Goichiro HANAOKA Kanta MATSUURA Tsutomu MATSUMOTO
Fault-tolerant aggregate signature (FT-AS) is a special type of aggregate signature that is equipped with the functionality for tracing signers who generated invalid signatures in the case an aggregate signature is detected as invalid. In existing FT-AS schemes (whose tracing functionality requires multi-rounds), a verifier needs to send a feedback to an aggregator for efficiently tracing the invalid signer(s). However, in practice, if this feedback is not responded to the aggregator in a sufficiently fast and timely manner, the tracing process will fail. Therefore, it is important to estimate whether this feedback can be responded and received in time on a real system. In this work, we measure the total processing time required for the feedback by implementing an existing FT-AS scheme, and evaluate whether the scheme works without problems in real systems. Our experimental results show that the time required for the feedback is 605.3 ms for a typical parameter setting, which indicates that if the acceptable feedback time is significantly larger than a few hundred ms, the existing FT-AS scheme would effectively work in such systems. However, there are situations where such feedback time is not acceptable, in which case the existing FT-AS scheme cannot be used. Therefore, we further propose a novel FT-AS scheme that does not require any feedback. We also implement our new scheme and show that a feedback in this scheme is completely eliminated but the size of its aggregate signature (affecting the communication cost from the aggregator to the verifier) is 144.9 times larger than that of the existing FT-AS scheme (with feedbacks) for a typical parameter setting, and thus has a trade-off between the feedback waiting time and the communication cost from the verifier to the aggregator with the existing FT-AS scheme.
Zhihao LI Ruihu LI Chaofeng GUAN Liangdong LU Hao SONG Qiang FU
In this paper, we propose a class of 1-generator quasi-twisted codes with special structures and investigate their application to construct ternary quantum codes. We discuss the algebraic structure of these 1-generator quasi-twisted codes and their dual codes. Moreover, sufficient conditions for these quasi-twisted codes to satisfy Hermitian self-orthogonality are given. Then, some ternary quantum codes exceeding the Gilbert-Varshamov bound are derived from such Hermitian self-orthogonal 1-generator quasi-twisted codes. In particular, sixteen quantum codes are new or have better parameters than those in the literatures, eight of which are obtained by the progapation rules.
The ordered successive interference cancellation (OSIC) detector based on the minimum mean square error (MMSE) criterion has been proved to be a low-complexity detector with efficient bit error rate (BER) performance. As the well-known MMSE-Based OSIC detector, the MMSE-Based vertical Bell Laboratories Layered Space-Time (VBLAST) detector, whose computational complexity is cubic, can not attain the minimum BER performance. Some approaches to reducing the BER of the MMSE-Based VBLAST detector have been contributed, however these improvements have large computational complexity. In this paper, a low complexity MMSE-Based OSIC detector called MMSE-OBEP (ordering based on error probability) is proposed to improve the BER performance of the previous MMSE-Based OSIC detectors, and it has cubic complexity. The proposed detector derives the near-exact error probability of the symbols in the MMSE-Based OSIC detector, thus giving priority to detect the symbol with the smallest error probability can minimize the error propagation in the MMSE-Based OSIC detector and enhance the BER performance. We show that, although the computational complexity of the proposed detector is cubic, it can provide better BER performance than the previous MMSE-Based OSIC detector.