1-6hit |
Shin'ichiro SHINOMIYA Masaki AIDA Kazuyoshi SAITOH Noriteru SHINAGAWA Takehiko KOBAYASHI
Recent development of compact and powerful portable computers and mobile phones and proliferation of the Internet will enable mobile multimedia communications. From the viewpoint of implementing multimedia services into mobile communications, it allows us to predict that traffic characteristics of mobile networks change. For planning, designing, and operating mobile multimedia networks, it is important to investigate traffic models which take the effect of multimedia services into consideration. This paper investigates population of active users in a micro-cell and proposes a traffic model for mobile multimedia networks. This model describes a population process of active users in a micro-cell in diffusion model, and its characteristics include self-similarity and activity of mobility. We also made an evaluation of network performance by using simulation, in order to show that characteristics of the proposed traffic model have impact on planning and designing networks.
Kazuyoshi SAITOH Hirotoshi HIDAKA Noriteru SHINAGAWA Takehiko KOBAYASHI
Understanding traffic characteristics in mobile communications is invaluable for planning, designing, and operating cellular networks, and various mobility models have therefore come to be developed to predict traffic characteristics. In this paper, cell-dwell-time distribution and transition probability in a virtual cellular system are first estimated from the results of measuring taxi motion using the Global Positioning System (GPS) for large-city and small-city ranges of motion. Then, on the basis of simulations using these estimations, traffic characteristics like handoff rate and channel blocking probability in a cellular system are evaluated. It was found that a difference between large and small cities could be observed in speed distribution and direction-of-travel probability, but only a slight difference in cell-dwell-time distribution.
Hirotoshi HIDAKA Kazuyoshi SAITOH Noriteru SHINAGAWA Takehiko KOBAYASHI
This paper discusses self-similarity in cell dwell time of a mobile terminal, the discovery of which was described in our previous paper, and its effects on teletraffic of mobile communication networks. We have evaluated various teletraffic statistics, such as cell dwell time and channel occupancy time, of a mobile terminal based on measurements of motion for various types of vehicles. Those results show that cell dwell time follows a long-tailed log-normal distribution rather than the exponential distribution that has been used for modeling. Here, we first elaborate on self-similarity in cell dwell time of various vehicles. We then evaluate self-similarity in channel occupancy time. For future mobile multimedia communication systems employing a micro-cell configuration, it is anticipated that data communication will be the main form of communication and that call holding time will be long. For such cases, we have shown that channel occupancy time will be greatly affected by the cell dwell time of the mobile terminal, and that self-similarity, a characteristic that is not seen in conventional systems, will consequently appear. We have also found that hand-off frequently fails as self-similarity in cell dwell time of a mobile terminal becomes stronger.
Hirotoshi HIDAKA Kazuyoshi SAITOH Noriteru SHINAGAWA Takehiko KOBAYASHI
In evaluating the teletraffic of mobile communication networks, it is important to model the motion of terminals. In the previous migration model, mobility characteristics of terminals, such as cell dwell time, have been expressed by a single probability distribution. In this paper, we discuss the modeling of the cell dwell time of terminals in each cell. Using measured data we show that cell dwell time differs from cell to cell and follows log-normal distributions rather than conventional exponential distributions.
Hirotoshi HIDAKA Kazuyoshi SAITOH Noriteru SHINAGAWA Takehiko KOBAYASHI
The cellular-communication systems of the future will be required to provide multimedia services to users moving about in a variety of ways (on foot, in automobiles etc.). Different forms of motion have different characteristics. The characterization of the different forms of motion and their effects on telecommunications traffic is important in the planning, design and operation of mobile communication networks. The characterization of the motion of various platform types (inter-city buses, recreational vehicles, freight trucks, and taxis) based on measurements using Global Positioning System is presented in this paper. The measured characteristics of motion are then used to evaluate teletraffic statistics such as cell cross-over rate and cell dwell time by overlaying hypothetical cell systems on the measured loci of vehicles. Self-similarity was discovered in the cell dwell time characteristic of the taxis.
Kazuyoshi SAITOH Yasuhiko INOUE Tomoaki KUMAGAI Masataka IIZUKA Satoru AIKAWA Masahiro MORIKURA
This paper proposes a new effective data transfer method for IEEE 802.11 wireless LANs by integrating priority control and multirate mechanism. The IEEE 802.11 PHY layer supports a multirate mechanism with dynamic rate switching and an appropriate data rate is selected in transmitting a frame. However, the multirate mechanism is used with the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) protocol, low rate transmissions need much longer time than high rate transmissions to finish sending a frame. As a result, the system capacity is decreased. The proposed method assumes the same number of priority levels as the data rates, and a data rate is associated to a priority level. Priority of a transmission goes up with the used data rate. For this purpose, we have modified the CSMA/CA protocol to support prioritized transmission. By selecting the appropriate priority depending on the data rate and giving more transmission opportunities for high rate transmission, the system capacity is increased. The effect of the proposed mechanism is confirmed by computer simulations.