1-3hit |
Takayuki KAWASHIMA Yoshihiro SASAKI Kenta MIURA Naoki HASHIMOTO Akiyoshi BABA Hiroyuki OHKUBO Yasuo OHTERA Takashi SATO Wataru ISHIKAWA Tsutomu AOYAMA Shojiro KAWAKAMI
Autocloning is a method for fabricating multi-dimensional structures by stacking the corrugated films while keeping the shape. Its productivity, robustness against perturbation, and flexibility regarding materials and lattice types make autocloning suitable for mass production of photonic crystals. Therefore we aim to industrialize autocloned photonic crystals. Recently, we are starting to market polarization beam splitters for optical telecommunication by using 2D photonic crystals, and are developing some devices using the splitters, such as isolators or beam combiners. The applications of the splitters are also extending to multi-section type of devices and to visible range devices. Meanwhile, development of optical integrated circuits by utilizing autocloned photonic crystals is in progress. Low loss propagation and some functions have been demonstrated.
Osamu HANAIZUMI Kenta MIURA Makito SAITO Takashi SATO Shojiro KAWAKAMI Eiichi KURAMOCHI Satoshi OKU
Photonic crystals have optical properties characterized by photonic bandgap, large anisotropy and high dispersion, which can be applied to various optical devices. We have proposed an autocloning method for fabricating 2D or 3D photonic crystals and are developing novel structures and functions in photonic crystals. The autocloning is an easy process based on the combination of sputter deposition and sputter etching and is suitable for industry. We have already demonstrated devices or functions such as polarization splitters and surface-normal waveguides. In this paper, we describe our latest work on photonic crystals utilizing the autocloning technology. Phase plates and polarization selective gratings for optical pick-ups are demonstrated utilizing TiO2/SiO2 photonic crystals. The technology to introduce CdS into 3D photonic crystals is also developed and photoluminescence from the introduced CdS is observed, which is the first step to realize luminescent devices with 3D confinement or high polarization controllability.
Kenta MIURA Hiroki MIYAZAKI Osamu HANAIZUMI
We obtained blue photoluminescence from tantalum oxide films deposited by radio-frequency magnetron sputtering after annealing. The maximum peak intensity of the photoluminescence was observed from a sample annealed at 600 for 20 min, and the peak wavelength was approximately 430 nm. Tantalum oxide films that emit blue light may be useful materials for novel active optical devices utilizing Ta2O5/SiO2 multilayered photonic crystals.