Author Search Result

[Author] Satoshi OKU(10hit)

1-10hit
  • Degraded Image Classification using Knowledge Distillation and Robust Data Augmentations Open Access

    Dinesh DAULTANI  Masayuki TANAKA  Masatoshi OKUTOMI  Kazuki ENDO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/07/26
      Vol:
    E107-D No:12
      Page(s):
    1517-1528

    Image classification is a typical computer vision task widely used in practical applications. The images used for training image classification networks are often clean, i.e., without any image degradation. However, Convolutional neural networks trained on clean images perform poorly on degraded or corrupted images in the real world. In this study, we effectively utilize robust data augmentation (DA) with knowledge distillation to improve the classification performance of degraded images. We first categorize robust data augmentations into geometric-and-color and cut-and-delete DAs. Next, we evaluate the effectual positioning of cut-and-delete DA when we apply knowledge distillation. Moreover, we also experimentally demonstrate that combining the RandAugment and Random Erasing approach for geometric-and-color and cut-and-delete DA improves the generalization of the student network during the knowledge transfer for the classification of degraded images.

  • Multimedia "Paper" Services/Human Interfaces and Multimedia Communication Workstation for Broadband ISDN Environments

    Tsuneo KATSUYAMA  Hajime KAMATA  Satoshi OKUYAMA  Toshimitsu SUZUKI  You MINAKUCHI  Katsutoshi YANO  

     
    PAPER

      Vol:
    E76-B No:3
      Page(s):
    220-228

    Broadband multimedia information environments are part of the next big advance in communications and computer technology. The use of multimedia infrastructures in offices is becoming very important. This paper deals with a service concept and human interfaces based on a paper metaphor. The proposed service offers the advantages of paper and eliminates the disadvantages. The power of multimedia's expressiveness, user interaction, and hypermedia technology are key points of our solution. We propose a system configuration for implementing the service/human interface.

  • Polarization Independent Semiconductor Arrayed Waveguide Gratings Using a Deep-Ridge Waveguide Structure

    Masaki KOHTOKU  Hiroaki SANJOH  Satoshi OKU  Yoshiaki KADOTA  Yuzo YOSHIKUNI  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1195-1204

    This paper describes the design of polarization insensitive InP-based arrayed waveguide gratings (AWGs), and the characteristics of fabricated devices. The use of a deep-ridge waveguide structure made the fabrication of compact polarization-insensitive AWGs possible. As a result, a low crosstalk (-30 dB) 8-channel AWG and a large-scale (64 channel) AWG with 50 GHz channel spacing could be fabricated. An integrated circuit containing an 8-channel AWG with photodetectors is also described.

  • A Novel Chirped Fiber Bragg Grating Utilizing Thermal Diffusion of Core Dopant

    Satoshi OKUDE  Tetsuya SAKAI  Masaaki SUDOH  Akira WADA  Ryozo YAMAUCHI  

     
    PAPER

      Vol:
    E80-B No:4
      Page(s):
    551-556

    A novel technique is proposed to fabricate a chirped fiber Bragg grating utilizing thermal diffusion of core dopant. The chirped grating is written with a uniform period by using UV exposure technique in the fiber whose effective index of the guided mode varies along its length. Thermal diffusion of the core dopant it employed to realize this change of the effective index. Through the thermal diffusion process, the effective index of the fiber decreases from its initial value. When the grating is written in the diffused core region, its reflection wavelength becomes shorter than that in the non-diffused region. The continuous change of effective index is required for making a chirped grating. The fiber is heated by a non-uniform heat source. When the uniform grating is written in this region, the reflection wavelength smoothly changes along the fiber length although the grating period is constant. By optimizing the fiber parameters to realize a highly chirped grating, we have obtained a typical one whose bandwidth is 14.1 nm at half maximum and maximum rejection in transmission is 29 dB. Additionally, the proposed method has an advantage to control the chirp profile with high mechanical reliability.

  • PDL Suppression on Long-Period Fiber Gratings by Azimuthally Isotropic Exposure

    Yuu ISHII  Kensuke SHIMA  Satoshi OKUDE  Kenji NISHIDE  Akira WADA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    934-939

    We investigate a method to suppress the polarization-dependent loss (PDL) of long-period fiber gratings (LPFGs). We study the origins of the PDL and propose an azimuthally isotropic UV exposure to suppress the UV-induced birefringence and to realize low-PDL LPFGs. By using this technique and a low birefringent fiber together, the PDL of LPFGs can be reduced to a sufficiently low level required in high performance communication systems. Moreover, the validity of our theoretical modeling is confirmed by the experimental results.

  • InP-Based Monolithic Optical Frequency Discriminator Module for WDM Systems

    Ken TSUZUKI  Hiroaki TAKEUCHI  Satoshi OKU  Masahiro TANOBE  Yoshiaki KADOTA  Fumiyoshi KANO  Hiroyuki ISHII  Mitsuo YAMAMOTO  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1454-1459

    We have developed an InP-based monolithic optical frequency discriminator consisting of a temperature-insensitive optical filter and dual photodiodes. This integrated device detects the optical frequency deviation of the input light as differential photocurrent from the dual photodiodes, and the photocurrent is fedback to the light source for frequency stabilization through a differential amplifier. The FSR and extinction ratio of the filter are 50 GHz and 20 dB. The total opto-electronic conversion efficiency is 40%. In a frequency stabilization experiment using the developed discriminator, the frequency fluctuation of a DFB laser was reduced to less than 10 MHz.

  • Outside-In Conditional Narrowing

    Tetsuo IDA  Satoshi OKUI  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E77-D No:6
      Page(s):
    631-641

    We present outside-in conditional narrowing for orthogonal conditional term rewriting systems, and show the completeness of leftmost-outside-in conditional narrowing with respect to normalizable solutions. We consider orthogonal conditional term rewriting systems whose conditions consist of strict equality only. Completeness results are obtained for systems both with and without extra variables. The result bears practical significance since orthogonal conditional term rewriting systems can be viewed as a computation model for functional-logic programming languages and leftmost-outside-in conditional narrowing is the computing mechanism for the model.

  • ASPnP: An Accurate and Scalable Solution to the Perspective-n-Point Problem

    Yinqiang ZHENG  Shigeki SUGIMOTO  Masatoshi OKUTOMI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E96-D No:7
      Page(s):
    1525-1535

    We propose an accurate and scalable solution to the perspective-n-point problem, referred to as ASPnP. Our main idea is to estimate the orientation and position parameters by directly minimizing a properly defined algebraic error. By using a novel quaternion representation of the rotation, our solution is immune to any parametrization degeneracy. To obtain the global optimum, we use the Grobner basis technique to solve the polynomial system derived from the first-order optimality condition. The main advantages of our proposed solution lie in accuracy and scalability. Extensive experiment results, with both synthetic and real data, demonstrate that our proposed solution has better accuracy than the state-of-the-art noniterative solutions. More importantly, by exploiting vectorization operations, the computational cost of our ASPnP solution is almost constant, independent of the number of point correspondences n in the wide range from 4 to 1000. In our experiment settings, the ASPnP solution takes about 4 milliseconds, thus best suited for real-time applications with a drastically varying number of 3D-to-2D point correspondences.

  • InP-Based Monolithic Optical Frequency Discriminator Module for WDM Systems

    Ken TSUZUKI  Hiroaki TAKEUCHI  Satoshi OKU  Masahiro TANOBE  Yoshiaki KADOTA  Fumiyoshi KANO  Hiroyuki ISHII  Mitsuo YAMAMOTO  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1188-1193

    We have developed an InP-based monolithic optical frequency discriminator consisting of a temperature-insensitive optical filter and dual photodiodes. This integrated device detects the optical frequency deviation of the input light as differential photocurrent from the dual photodiodes, and the photocurrent is fedback to the light source for frequency stabilization through a differential amplifier. The FSR and extinction ratio of the filter are 50 GHz and 20 dB. The total opto-electronic conversion efficiency is 40%. In a frequency stabilization experiment using the developed discriminator, the frequency fluctuation of a DFB laser was reduced to less than 10 MHz.

  • Frontiers Related with Automatic Shaping of Photonic Crystals

    Osamu HANAIZUMI  Kenta MIURA  Makito SAITO  Takashi SATO  Shojiro KAWAKAMI  Eiichi KURAMOCHI  Satoshi OKU  

     
    INVITED PAPER-Switches and Novel Devices

      Vol:
    E83-C No:6
      Page(s):
    912-919

    Photonic crystals have optical properties characterized by photonic bandgap, large anisotropy and high dispersion, which can be applied to various optical devices. We have proposed an autocloning method for fabricating 2D or 3D photonic crystals and are developing novel structures and functions in photonic crystals. The autocloning is an easy process based on the combination of sputter deposition and sputter etching and is suitable for industry. We have already demonstrated devices or functions such as polarization splitters and surface-normal waveguides. In this paper, we describe our latest work on photonic crystals utilizing the autocloning technology. Phase plates and polarization selective gratings for optical pick-ups are demonstrated utilizing TiO2/SiO2 photonic crystals. The technology to introduce CdS into 3D photonic crystals is also developed and photoluminescence from the introduced CdS is observed, which is the first step to realize luminescent devices with 3D confinement or high polarization controllability.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.