1-2hit |
Hiroyuki ITO Hideyuki SUGITA Kenichi OKADA Tatsuya ITO Kazuhisa ITOI Masakazu SATO Ryozo YAMAUCHI Kazuya MASU
This paper proposes high-Q distributed constant passive devices using wafer-level chip scale package (WL-CSP) technology, which can be realized on a Si CMOS chip. A 90directional coupler using the WL-CSP technology has center frequency of 25.6 GHz, insertion loss of -0.5 dB and isolation of -29.8 dB in the measurement result. The WL-CSP technology contributes to realize low-loss RF passive devices on Si CMOS chip, which is indispensable to achieve small-size, cost-effective and low-power monolithic wireless communication circuits (MWCCs).
Masakazu SATO Hiroshi HASEGAWA Ken-ichi SATO
We propose an efficient network design algorithm that realizes shared protection. The algorithm iteratively improves the degree of wavelength resource usage and fiber utilization. To achieve this, we newly define two metrics to evaluate the degree of wavelength resource usage of a pair of working/backup paths and the fiber utilization efficiency. The proposed method iteratively redesigns groups of paths that are selected in the order determined by the metrics. A numerical analysis verifies that the proposed algorithm can substantially reduce the required wavelength resources and hence fiber cost. It is also verified that the computational complexity of the proposed algorithm is small enough to terminate within practicable time.