1-13hit |
Yasufumi SASAKI Masanobu KOMINAMI Hiroji KUSAKA
An efficient full–wave spectral domain moment method is developed to compute the current distribution and the radiation associated with microstrip discontinuities. Two techniques are used to increase the efficiency of the method of moments algorithm so that a transmission line of moderate electrical size can be analyzed in reasonable time.
Kiyoshi INUI Masanobu KOMINAMI Hiroji KUSAKA
On a simple model, the quality of the security tag is simulated theoretically and experimentally. A simple correction makes both results correspond exactly and a simulation formula is provided. By using novel insulating film, a small-sized tag of high quality is developed.
Tomotaka WADA Masanobu KOMINAMI Hiroji KUSAKA
The printed dipole on a semi-infinite substrate is investigated. The solution is based on the moment method in the Fourier transform domain. We analyze far-field and near-field radiation patterns for a printed dipole. Therefore, we make radiation fields clear.
Hideaki WAKABAYASHI Masanobu KOMINAMI Jiro YAMAKITA
In this paper, electromagnetic scattering by infinite double two-dimensional periodic array of resistive upper and lower elements is considered. The electric field equations are solved by using the moment method in the spectral domain. Some numerical results are shown and frequency selective properties are discussed.
Hideaki WAKABAYASHI Masanobu KOMINAMI Shinnosuke SAWA Hiroshi NAKASHIMA
Frequency Selective Screens (FSS) with conductor or complementary aperture array are investigated. The electric current distribution on conductor or the magnetic current distribution on aperture is determined by the moment method in the spectral domain. In addition, the power reflection coefficients are calculated and the scattering properties are considered.
Ling CHEN Hiroji KUSAKA Masanobu KOMINAMI
This study is aimed to derive a new theoretical solution for blind equalizers. Undr the common assumptions for this framework, it is found that the condition for blind equalization is directly associated with an eigenproblem, i.e. the tap coefficients of the equalizer appear as an eigenvector of a higher order statistics matrix. Computer simulations show that very fast convergence can be achieved based on the approach.
Kiyoshi INUI Hiroshi TADA Masanobu KOMINAMI Hiroji KUSAKA
The design theory was revealed by theoretical analysis of the measuring apparatus, and was confirmed experimentally. Higher quality tags having new circuit disigns were proposed by the revealed theory. The measuring apparatus equivalent to the security system was produced to estimate the properties of the LC resonant circuit security tags quantitatively.
Umut YUNUS Masaru TSUNASAKI Yiwei HE Masanobu Kominami Katsumi YAMASHITA
Gas or water leaks in pipes that are buried under ground or that are situated in the walls of buildings may occur due to aging or unpredictable accidents, such as earthquakes. Therefore, the detection of leaks in pipes is an important task and has been investigated extensively. In the present paper, we propose a novel leak detection method by means of acoustic wave. We inject an acoustic chirp signal into a target pipeline and then estimate the leak location from the delay time of the compressed pulse by passing the reflected signal through a correlator. In order to distinguish a leak reflection in a complicated pipeline arrangement, the reflection characteristics of leaks are carefully discussed by numerical simulations and experiments. There is a remarkable difference in the reflection characteristics between the leak and other types of discontinuity, and the property can be utilized to distinguish the leak reflection. The experimental results show that, even in a complicated pipe arrangement including bends and branches, the proposed approach can successfully implement the leak detection. Furthermore, the proposed approach has low cost and is easy to implement because only a personal computer and some commonly equipment are required.
Kiyoshi INUI Yuichiro KATSU Masanobu KOMINAMI Hiroji KUSAKA
We reveal fundamental electromagnetic characteristics of a basic proposition of the security tag system, being able to exclude a misjudgment caused by a neighboring reflective object, provided with a correlative detection, and that with a multi-resonant tag.
Hideaki WAKABAYASHI Masanobu KOMINAMI Hiroji KUSAKA Hiroshi NAKASHIMA
A full-wave analysis for the scattering problem of infinite periodic arrays on dielectric substrates excited by a circularly-polarized incident wave is presented. The impedance boundary condition is solved by using the moment method in the spectral domain. Numerical results are given and scattering properties are discussed.
Ling CHEN Hiroji KUSAKA Masanobu KOMINAMI
This study is aimed to explore a fast convergence method of blind equalization using higher order statistics (cumulants). The efforts are focused on deriving new theoretical solutions for blind equalizers rather than investigating practical algorithms. Under the common assumptions for this framework, it is found that the condition for blind equalization is directly associated with an eigenproblem, i. e. the lag coefficients of the equalizer can be obtained from the eigenvectors of a higher order statistics matrix. A method of blind phase recovery is also proposed for QAM systems. Computer simulations show that very fast convergence can be achieved based on the approach.
Katsutoshi YOKOE Masanobu KOMINAMI Hiroji KUSAKA Masaru TSUNASAKI
On ranging system on short distance using spread spectrum, we examine waveform responses to predict the state of electromagnetic waveform propagation while the signal is received after scattered by a target. Then this system and the numerical results are discussed.
Yasufumi SASAKI Masanobu KOMINAMI Shinnosuke SAWA
Numerical solutions for the near-field of microstrip antennas are presented. The field distribution is calculated by taking the inverse Fourier transform involving the current distribution with the help of the spectral-domain moment method. A new technique to save the computation time is devised, and the field pattern of the circularly polarized antenna is illustrated.