Author Search Result

[Author] Mitsuo KONNO(2hit)

1-2hit
  • 60-GHz-Band Monolithic HEMT Amplifiers Using BCB Thin Film Layers on GaAs Substrates

    Naoko ONO  Yumi FUCHIDA  Junko ONOMURA  Minoru AMANO  Masayuki SUGIURA  Kunio YOSHIHARA  Eiji TAKAGI  Mitsuo KONNO  

     
    PAPER-Active Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1073-1079

    A 60-GHz-band monolithic HEMT amplifier for which BCB thin film layers are adopted on GaAs substrate has been developed. The MMIC utilized a thin film microstrip line for the bias circuit and a coplanar waveguide for the RF circuit. The coplanar waveguide has the advantage of low loss, whereas the thin film microstrip line has the advantage of small size. Two different types of transmission lines were selected to coexist in the monolithic amplifier. As a result, the MMIC achieved high gain over a wider frequency range at a small size. This MMIC had a gain of over 15 dB in a frequency bandwidth of 11 GHz. In particular, the high-frequency characteristics of the transmission lines and the HEMTs were evaluated in detail for the conventional MMIC structure and the new MMIC structure. It was confirmed that this newly developed MMIC using BCB thin film layers is attractive for millimeter-wave applications.

  • An Optimum Bias Point Study of Low Local Oscillator Power Operation for 60 GHz Drain Mixer

    Keiichi YAMAGUCHI  Yasuhiko KURIYAMA  Eiji TAKAGI  Mitsuo KONNO  

     
    PAPER-Low Power-Consumption RF ICs

      Vol:
    E82-C No:11
      Page(s):
    1982-1991

    The optimum bias point for a drain mixer operating on low local oscillator (LO) power was investigated. The bias voltage dependence of the required LO power and the conversion gain in the drain mixer was clarified by a simplified nonlinear model which the drain current characteristics around knee voltage is approximated by two straight line segments. It was found that an optimum gate bias voltage Vgs exists for a given applied LO power, and the optimum gate bias voltage moves toward the pinch-off voltage as the injection LO power level decreases. In order to verify the variation of the optimum gate bias voltage, a 60 GHz MMIC drain mixer adopting the optimum gate bias voltage for low LO power level was fabricated. The fabricated drain mixer exhibited a conversion gain of 0 dB with the injection LO power level of 0 dBm. This value of 0 dBm is the best performance yet obtained for a 60 GHz MMIC drain mixer. The measured optimum gate bias voltage was near the pinch-off voltage. This result was in good agreement with the theoretical analysis. The LO power level of a drain mixer has been improved so that it is on a par with that of a gate mixer.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.