1-4hit |
Koichiro ISHIBASHI Koichi TAKASUGI Kunihiro KOMIYAJI Hiroshi TOYOSHIMA Toshiaki YAMANAKA Akira FUKAMI Naotaka HASHIMOTO Nagatoshi OHKI Akihiro SHIMIZU Takashi HASHIMOTO Takahiro NAGANO Takashi NISHIDA
A 4-Mb CMOS SRAM with 3.84 µm2 TFT load cells is fabricated using 0.25-µm CMOS technology and achieves an address access time of 6 ns at a supply voltage of 2.7 V. The use of a current sense amplifier that is insensitive to its offset voltage enables the fast access time. A boosted cell array architecture allows low voltage operation of fast SRAM's using TFT load cells.
Kenichi OSADA Hisayuki HIGUCHI Koichiro ISHIBASHI Naotaka HASHIMOTO Kenji SHIOZAWA
We fabricated a 16-kB cache macro using 0.35-µm quadruple-metal CMOS technology. This is a 285-MHz, two-port 16-kB (512256 b) cache macro that has a 2-ns access time. This high-speed performance is enabled by a hierarchical bit-line architecture that uses double global bit-line pairs (WGBs), and a high-speed timing-insensitive sense amplifier (ISA) that shortens the access time.
Koichiro ISHIBASHI Hisayuki HIGUCHI Toshinobu SHIMBO Kunio UCHIYAMA Kenji SHIOZAWA Naotaka HASHIMOTO Shuji IKEDA
There are various kinds of analog CMOS circuits in microprocessors. IOs, clock distribution circuits including PLL, memories are the main analog circuits. The circuit techniques to achieve low power dissipation combined with high performance in newest prototype chip in the Super H RISC engines are described. A TLB delay can be decreased by using a CAM with a differential amplifier to generate the match signal. The accelerator circuit also helps to speed up the TLB circuit, enabling single-cycle operation. A fabricated 96- mm 2 test chip with the super H architecture using 0. 35-µm four metal CMOS technology is capable of 167-MHz operation at 300 Dhrystone MIPS with 2. 0-W power dissipation.
Koichiro ISHIBASHI Kunihiro KOMIYAJI Sadayuki MORITA Toshiro AOTO Shuji IKEDA Kyoichiro ASAYAMA Atsuyosi KOIKE Toshiaki YAMANAKA Naotaka HASHIMOTO Haruhito IIDA Fumio KOJIMA Koichi MOTOHASHI Katsuro SASAKI
A 16-Mb CMOS SRAM using 0.4-µm CMOS technology has been developed. This SRAM features common-centroid-geometry (CCG) layout sense amplifiers which shorten the access time by 2.4 ns. A flexible redundancy technique achieves high efficiency without any access penalty. A memory cell with stacked capacitors is fabricated for high soft-error immunity. A 16-Mb SRAM with a chip size of 215 mm2 is fabricated and an address access time of 12.5 ns has been achieved.