1-5hit |
Ryo NAKAO Masakazu ARAI Takaaki KAKITSUKA Shinji MATSUO
We demonstrate heteroepitaxial growth of GaAs/Ge buffer layers for fabricating 1.3-µm range metamorphic InGaAs-based multiple quantum well (MQW) lasers in which the Ge buffer layer is grown using a metal-organic Ge precursor, iso-butyl germane, in a conventional metal-organic vapor phase epitaxy reactor. This enables us to grow Ge and GaAs buffer layers in the same reactor seamlessly. Transmission electron microscopy and X-ray diffraction analyses indicate that dislocations are well confined at the Ge/Si interface. Furthermore, thermal-cycle annealing significantly improves crystalline quality at the GaAs/Ge interface, resulting in higher photoluminescence intensity from the MQWs on the buffer layers.
Toru SEGAWA Shinji MATSUO Takaaki KAKITSUKA Yasuo SHIBATA Tomonari SATO Yoshihiro KAWAGUCHI Yasuhiro KONDO Ryo TAKAHASHI
We present an 88 wavelength-routing switch (WRS) that monolithically integrates tunable wavelength converters (TWCs) and an 88 arrayed-waveguide grating. The TWC consists of a double-ring-resonator tunable laser (DRR TL) allowing rapid and stable switching and a semiconductor-optical-amplifier-based optical gate. Two different types of dry-etched mirrors form the laser cavity of the DRR TL, which enable integration of the optical components of the WRS on a single chip. The monolithic WRS performed 18 high-speed wavelength routing of a non-return-to-zero signal at 10 Gbit/s. The switching operation was demonstrated by simultaneously using two adjacent TWCs.
Koji TAKEDA Tomonari SATO Takaaki KAKITSUKA Akihiko SHINYA Kengo NOZAKI Chin-Hui CHEN Hideaki TANIYAMA Masaya NOTOMI Shinji MATSUO
To meet the demand for light sources for on-chip optical interconnections, we demonstrate the continuous-wave (CW) operation of photonic-crystal (PhC) nanocavity lasers at up to 89.8 by using InP buried heterostructures (BH). The wavelength of a PhC laser can be precisely designed over a wide range exceeding 100 nm by controlling the lattice constant of the PhC. The dynamic responses of the PhC laser are also demonstrated with a 3-dB bandwidth of over 7.0 GHz at 66.2. These results reveal the laser's availability for application to wavelength division multiplexed (WDM) optical interconnection on CMOS chips. We discuss the total bandwidths of future on-chip optical interconnections, and report the capabilities of PhC lasers.
Takuro FUJII Koji TAKEDA Erina KANNO Koichi HASEBE Hidetaka NISHI Tsuyoshi YAMAMOTO Takaaki KAKITSUKA Shinji MATSUO
We have developed membrane distributed Bragg reflector (DBR) lasers on thermally oxidized Si substrate (SiO2/Si substrate) to evaluate the parameters of the on-Si lasers we have been developing. The lasers have InGaAsP-based multi-quantum wells (MQWs) grown on InP substrate. We used direct bonding to transfer this active epitaxial layer to SiO2/Si substrate, followed by epitaxial growth of InP to fabricate a buried-heterostructure (BH) on Si. The lateral p-i-n structure was formed by thermal diffusion of Zn and ion implantation of Si. For the purpose of evaluating laser parameters such as internal quantum efficiency and internal loss, we fabricated long-cavity lasers that have 200- to 600-µm-long active regions. The fabricated DBR lasers exhibit threshold currents of 1.7, 2.1, 2.8, and 3.7mA for active-region lengths of 200, 300, 400, and 600µm, respectively. The differential quantum efficiency also depends on active-region length. In addition, the laser characteristics depend on the distance between active region and p-doped region. We evaluated the internal loss to be 10.2cm-1 and internal quantum efficiency to be 32.4% with appropriate doping profile.
Takaaki KAKITSUKA Shinji MATSUO
We present a novel high-speed transmitter consisting of a frequency modulated DBR laser and optical filters. The refractive index modulation in the phase control region of the DBR laser allows high-speed frequency modulation. The generated frequency modulated signal is converted to an intensity modulated signal using the edge of the optical filter pass band. We present theoretical simulations of high-speed modulation characteristics and extension of transmission reach. With the proposed transmitter, we review the experimental demonstration of 180-km transmission of a 10-Gb/s signal with a tuning range of 27 nm and 60-km transmission of a 20-Gb/s signal.