1-2hit |
Xiantao JIANG Tian SONG Wen SHI Takafumi KATAYAMA Takashi SHIMAMOTO Lisheng WANG
In this work, a high efficiency coding unit (CU) size decision algorithm is proposed for high efficiency video coding (HEVC) inter coding. The CU splitting or non-splitting is modeled as a binary classification problem based on probability graphical model (PGM). This method incorporates two sub-methods: CU size termination decision and CU size skip decision. This method focuses on the trade-off between encoding efficiency and encoding complexity, and it has a good performance. Particularly in the high resolution application, simulation results demonstrate that the proposed algorithm can reduce encoding time by 53.62%-57.54%, while the increased BD-rate are only 1.27%-1.65%, compared to the HEVC software model.
Takafumi KATAYAMA Tian SONG Wen SHI Gen FUJITA Xiantao JIANG Takashi SHIMAMOTO
Scalable high efficiency video coding (SHVC) can provide variable video quality according to terminal devices. However, the computational complexity of SHVC is increased by introducing new techniques based on high efficiency video coding (HEVC). In this paper, a hardware oriented low complexity algorithm is proposed. The hardware oriented proposals have two key points. Firstly, the coding unit depth is determined by analyzing the boundary correlation between coding units before encoding process starts. Secondly, the redundant calculation of R-D optimization is reduced by adaptively using the information of the neighboring coding units and the co-located units in the base layer. The simulation results show that the proposed algorithm can achieve over 62% computation complexity reduction compared to the original SHM11.0. Compared with other related work, over 11% time saving have been achieved without PSNR loss. Furthermore, the proposed algorithm is hardware friendly which can be implemented in a small area.