1-4hit |
Takafumi KATAYAMA Tian SONG Wen SHI Gen FUJITA Xiantao JIANG Takashi SHIMAMOTO
Scalable high efficiency video coding (SHVC) can provide variable video quality according to terminal devices. However, the computational complexity of SHVC is increased by introducing new techniques based on high efficiency video coding (HEVC). In this paper, a hardware oriented low complexity algorithm is proposed. The hardware oriented proposals have two key points. Firstly, the coding unit depth is determined by analyzing the boundary correlation between coding units before encoding process starts. Secondly, the redundant calculation of R-D optimization is reduced by adaptively using the information of the neighboring coding units and the co-located units in the base layer. The simulation results show that the proposed algorithm can achieve over 62% computation complexity reduction compared to the original SHM11.0. Compared with other related work, over 11% time saving have been achieved without PSNR loss. Furthermore, the proposed algorithm is hardware friendly which can be implemented in a small area.
Xiantao JIANG Tian SONG Wen SHI Takafumi KATAYAMA Takashi SHIMAMOTO Lisheng WANG
In this work, a high efficiency coding unit (CU) size decision algorithm is proposed for high efficiency video coding (HEVC) inter coding. The CU splitting or non-splitting is modeled as a binary classification problem based on probability graphical model (PGM). This method incorporates two sub-methods: CU size termination decision and CU size skip decision. This method focuses on the trade-off between encoding efficiency and encoding complexity, and it has a good performance. Particularly in the high resolution application, simulation results demonstrate that the proposed algorithm can reduce encoding time by 53.62%-57.54%, while the increased BD-rate are only 1.27%-1.65%, compared to the HEVC software model.
Xiantao JIANG Tian SONG Wen SHI Takashi SHIMAMOTO Lisheng WANG
The purpose of this work is to reduce the redundant coding process with the tradeoff between the encoding complexity and coding efficiency in HEVC, especially for high resolution applications. Therefore, a CU depth prediction algorithm is proposed for motion estimation process of HEVC. At first, an efficient CTU depth prediction algorithm is proposed to reduce redundant depth. Then, CU size termination and skip algorithm is proposed based on the neighboring block depth and motion consistency. Finally, the overall algorithm, which has excellent complexity reduction performance for high resolution application is proposed. Moreover, the proposed method achieves steady performance, and it can significantly reduce the encoding time in different environment configuration and quantization parameter. The simulation experiment results demonstrate that, in the RA case, the average time saving is about 56% with only 0.79% BD-bitrate loss for the high resolution, and this performance is better than the previous state of the art work.
Xiantao JIANG Tian SONG Takashi SHIMAMOTO Wen SHI Lisheng WANG
The next generation high efficiency video coding (HEVC) standard achieves high performance by extending the encoding block to 64×64. There are some parallel tools to improve the efficiency for encoder and decoder. However, owing to the dependence of the current prediction block and surrounding block, parallel processing at CU level and Sub-CU level are hard to achieve. In this paper, focusing on the spatial motion vector prediction (SMVP) and temporal motion vector prediction (TMVP), parallel improvement for spatio-temporal prediction algorithms are presented, which can remove the dependency between prediction coding units and neighboring coding units. Using this proposal, it is convenient to process motion estimation in parallel, which is suitable for different parallel platforms such as multi-core platform, compute unified device architecture (CUDA) and so on. The simulation experiment results demonstrate that based on HM12.0 test model for different test sequences, the proposed algorithm can improve the advanced motion vector prediction with only 0.01% BD-rate increase that result is better than previous work, and the BDPSNR is almost the same as the HEVC reference software.