1-2hit |
Koji ABE Mikiya KUZUTANI Satoki FURUYA Jose A. PIEDRA-LORENZANA Takeshi HIZAWA Yasuhiko ISHIKAWA
A reduced dark leakage current, without degrading the near-infrared responsivity, is reported for a vertical pin structure of Ge photodiodes (PDs) on n+-Si substrate, which usually shows a leakage current higher than PDs on p+-Si. The peripheral/surface leakage, the dominant leakage in PDs on n+-Si, is significantly suppressed by globally implanting P+ in the i-Si cap layer protecting the fragile surface of i-Ge epitaxial layer before locally implanting B+/BF2+ for the top p+ region of the pin junction. The P+ implantation compensates free holes unintentionally induced due to the Fermi level pinning at the surface/interface of Ge. By preventing the hole conduction from the periphery to the top p+ region under a negative/reverse bias, a reduction in the leakage current of PDs on n+-Si is realized.
Kazuaki SAWADA Hirokazu NAKAZAWA Shoko TAKENAGA Takeshi HIZAWA Masato FUTAGAWA Fumihiro DASAI Takashi SAKURAI Koichi OKUMURA Toshiaki HATTORI Makoto ISHIDA
To visualize the biochemical distribution two-dimensionally, we invented a solid-state-type ion image sensor that indicates the chemical activity of solutions and cells. The device, which consists of a CCD array covered with a functionalized membrane to detect charge accumulation, is highly sensitive to changes in the concentration and two-dimensional distribution of ions and biomaterials.