1-3hit |
Hirohito YAMADA Tao CHU Satomi ISHIDA Yasuhiko ARAKAWA
We fabricated various microscopic optical devices with Si photonic wire waveguides and demonstrated their fundamental characteristics. The bending loss of the waveguide was practically negligible when the bending radius of the waveguide exceeded 5 µm. Therefore, we can fabricate very compact optical devices with the waveguide. We demonstrated an optical directional coupler with the waveguide. The coupling length of the directional coupler was extremely small, several micrometers, because of strong optical coupling between the waveguide cores. We also demonstrated ultrasmall optical add/drop multiplexers (OADMs) with Bragg grating reflectors constructed from the waveguides. The dropping wavelength bandwidth of the OADM device was less than 2 nm and the dropping center wavelength could be tuned using thermooptic control with a microheater formed on the Bragg reflector. Using the Si photonic wire waveguide, we also demonstrated thermooptic switches by forming a microheater on a branch of a Mach-Zehnder interferometer made up of the waveguides. In this switching operation, we observed an extinction ratio exceeding 30 dB, a switching power less than 90 mW, and a switching response speed less than 100 µs using a 12 optical switch with an 8530 µm2 footprint.
Tao CHU Hirohito YAMADA Shigeru NAKAMURA Masashige ISHIZAKA Masatoshi TOKUSHIMA Yutaka URINO Satomi ISHIDA Yasuhiko ARAKAWA
Silicon photonic devices based on silicon photonic wire waveguides are especially attractive devices, since they can be ultra-compact and low-power consumption. In this paper, we demonstrated various devices fabricated on silicon photonic wire waveguides. They included optical directional couplers, reconfigurable optical add/drop multiplexers, 12, 14, 18 and 44 optical switches, ring resonators. The characteristics of these devices show that silicon photonic wire waveguides offer promising platforms in constructing compact and power-saving photonic devices and systems.
Akiko GOMYO Jun USHIDA Tao CHU Hirohito YAMADA Satomi ISHIDA Yasuhiko ARAKAWA
We report on a channel drop filter with a mode gap in the propagating mode of a photonic crystal slab that was fabricated on silicon on an insulator wafer. The results, simulated with the 3-dimensional finite-difference time-domain and plane-wave methods, demonstrated that an index-guiding mode for the line defect waveguide of a photonic crystal slab has a band gap at wave vector k = 0.5 for a mainly TM-like light-wave. The mode gap works as a distributed Bragg grating reflector that propagates the light-wave through the line defect waveguide, and can be used as an optical filter. The filter bandwidth was varied from 1-8 nm with an r/a (r: hole radius, a: lattice constant) variation around the wavelength range of 1550-1600 nm. We fabricated a Bragg reflector with a photonic crystal line-defect waveguide and Si-channel waveguides and by measuring the transmittance spectrum found that the Bragg reflector caused abrupt dips in transmittance. These experimental results are consistent with the results of the theoretical analysis described above. Utilizing the Bragg reflector, we fabricated channel dropping filters with photonic crystal slabs connected between channel waveguides and demonstrated their transmittance characteristics. They were highly drop efficient, with a flat-top drop-out spectrum at a wavelength of 1.56 µm and a drop bandwidth of 5.8 nm. Results showed that an optical add-drop multiplexer with a 2-D photonic crystal will be available for application in WDM devices for photonic networks and for LSIs in the near future.