1-3hit |
Ning LI Keigo BUNSEN Naoki TAKAYAMA Qinghong BU Toshihide SUZUKI Masaru SATO Yoichi KAWANO Tatsuya HIROSE Kenichi OKADA Akira MATSUZAWA
At mm-wave frequency, the layout of CMOS transistors has a larger effect on the device performance than ever before in low frequency. In this work, the distance between the gate and drain contact (Dgd) has been enlarged to obtain a better maximum available gain (MAG). By using the asymmetric-layout transistor, a 0.6 dB MAG improvement is realized when Dgd changes from 60 nm to 200 nm. A four-stage common-source low noise amplifier is implemented in a 65 nm CMOS process. A measured peak power gain of 24 dB is achieved with a power dissipation of 30 mW from a 1.2-V power supply. An 18 dB variable gain is also realized by adjusting the bias voltage. The measured 3-dB bandwidth is about 17 GHz from 51 GHz to 68 GHz, and noise figure (NF) is from 4.0 dB to 7.6 dB.
Toshihide SUZUKI Yasuhiro NAKASHA Hideki KANO Masaru SATO Satoshi MASUDA Ken SAWADA Kozo MAKIYAMA Tsuyoshi TAKAHASHI Tatsuya HIROSE Naoki HARA Masahiko TAKIGAWA
In this paper, we describe the operation of circuits capable of more than 40-Gbit/s that we have developed using InP HEMT technology. For example, we succeeded in obtaining 43-Gbit/s operation for a full-rate 4:1Multiplier (MUX), 50-Gbit/s operation for a Demultiplexer (DEMUX), 50-Gbit/s operation for a D-type flip-flop (D-FF), and a preamplifier with a bandwidth of 40 GHz. In addition, the achievement of 90-Gbit/s operation for a 2:1MUX and a distributed amplifier with over 110-GHz bandwidth indicates that InP HEMT technology is promising for system operations of over 100 Gbit/s. To achieve these results, we also developed several design techniques to improve frequency response above 80 GHz including a symmetric and separated layout of differential elements in the basic SCFL gate and inverted microstrip.
Masaru SATO Tatsuya HIROSE Koji MIZUNO
In this paper, we present the development of an advanced MMIC receiver for a 94-GHz band passive millimeter-wave (PMMW) imager. Our configuration is based on a Dicke receiver in order to reduce fluctuations in the detected voltage. By introducing an electronic switch in the MMIC, we achieved a high resolution millimeter-wave image in a shorter image collection time compared to that with a conventional mechanical chopper. We also developed an imaging array using MMIC receivers.