1-4hit |
Masahiro KASHIWAGI Katsuhiro TAKENAGA Kentaro ICHII Tomoharu KITABAYASHI Shoji TANIGAWA Kensuke SHIMA Shoichiro MATSUO Munehisa FUJIMAKI Kuniharu HIMENO
We review our recent work on Yb-doped and hybrid-structured solid photonic bandgap fibers (Yb-HS-SPBGFs) for linearly-polarized fiber lasers oscillating in the small gain wavelength range from 1160 nm to 1200 nm. The stack-and-draw or pit-in-jacket method is employed to fabricate two Yb-HS-SPBGFs. Both of the fiber shows optical filtering property for eliminating ASE in the large gain wavelength range from 1030 nm to 1130 nm and enough high birefringence for maintaining linear polarization, thanks to the photonic bandgap effect and the induced birefringence of the hybrid structure. The fiber attenuation of the Yb-HS-SPBGF fabricated by the pit-in-jacket method is much lower than that of the Yb-HS-SPBGF fabricated by stack-and-draw method. Linearly-polarized single stage fiber lasers using Yb-HS-SPBGFs are also demonstrated. Laser oscillation at 1180 nm is confirmed without parasitic lasing in the fiber lasers. High output power and high slope efficiency in linearly-polarized single-cavity fiber laser using the low-loss Yb-HS-SPGF fabricated by the pit-in-jacket method are achieved. Narrow linewidth, high polarization extinction ratio and high beam quality are also confirmed, which are required for high-efficient frequency-doubling. A compact and high-power yellow-orange frequency-doubling laser would be realized by using a linearly-polarized single-cavity fiber laser employing a low-loss Yb-HS-SPBGF.
Tomoharu KITABAYASHI Takuya AIZAWA Tetsuya SAKAI Akira WADA
In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.
Tomoharu KITABAYASHI Takuya AIZAWA Tetsuya SAKAI Akira WADA
In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.
Tomoharu KITABAYASHI Tetsuya SAKAI Akira WADA
In modern high-capacity wavelength division multiplexing (WDM) transmission systems, there is increasing demand for large transmission capacity. To achieve this purpose, an L-band (1565-1625 nm) erbium-doped fiber amplifier (EDFA) is very effective method because the conventional silica-based EDF can be used. In EDFAs that used in WDM transmission systems, the gain flatness of EDFA is very important. A passive gain equalizer flattens the gain profile of EDFA. But the gain flatness in L-band deteriorates due to dynamic gain-tilt (DGT) and temperature gain-tilt (TGT) when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we propose an active gain-slope compensation technique for the L-band EDFA using a thulium-doped fiber (TDF). The EDFA actively gain-slope compensated by the TDF compensator keeps the gain profile constant for the wide input power range of more than 8 dB, a wide temperature range of 65 without gain-tilt in a wavelength band between 1575 nm and 1610 nm. Furthermore, the EDFA keeps a low noise figure of less than 7.5 dB.