Full Text Views
143
We review our recent work on Yb-doped and hybrid-structured solid photonic bandgap fibers (Yb-HS-SPBGFs) for linearly-polarized fiber lasers oscillating in the small gain wavelength range from 1160 nm to 1200 nm. The stack-and-draw or pit-in-jacket method is employed to fabricate two Yb-HS-SPBGFs. Both of the fiber shows optical filtering property for eliminating ASE in the large gain wavelength range from 1030 nm to 1130 nm and enough high birefringence for maintaining linear polarization, thanks to the photonic bandgap effect and the induced birefringence of the hybrid structure. The fiber attenuation of the Yb-HS-SPBGF fabricated by the pit-in-jacket method is much lower than that of the Yb-HS-SPBGF fabricated by stack-and-draw method. Linearly-polarized single stage fiber lasers using Yb-HS-SPBGFs are also demonstrated. Laser oscillation at 1180 nm is confirmed without parasitic lasing in the fiber lasers. High output power and high slope efficiency in linearly-polarized single-cavity fiber laser using the low-loss Yb-HS-SPGF fabricated by the pit-in-jacket method are achieved. Narrow linewidth, high polarization extinction ratio and high beam quality are also confirmed, which are required for high-efficient frequency-doubling. A compact and high-power yellow-orange frequency-doubling laser would be realized by using a linearly-polarized single-cavity fiber laser employing a low-loss Yb-HS-SPBGF.
Masahiro KASHIWAGI
Katsuhiro TAKENAGA
Kentaro ICHII
Tomoharu KITABAYASHI
Shoji TANIGAWA
Kensuke SHIMA
Shoichiro MATSUO
Munehisa FUJIMAKI
Kuniharu HIMENO
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masahiro KASHIWAGI, Katsuhiro TAKENAGA, Kentaro ICHII, Tomoharu KITABAYASHI, Shoji TANIGAWA, Kensuke SHIMA, Shoichiro MATSUO, Munehisa FUJIMAKI, Kuniharu HIMENO, "Yb-Doped and Hybrid-Structured Solid Photonic Bandgap Fibers and Linearly-Polarized Fiber Lasers Oscillating above 1160 nm" in IEICE TRANSACTIONS on Electronics,
vol. E94-C, no. 7, pp. 1145-1152, July 2011, doi: 10.1587/transele.E94.C.1145.
Abstract: We review our recent work on Yb-doped and hybrid-structured solid photonic bandgap fibers (Yb-HS-SPBGFs) for linearly-polarized fiber lasers oscillating in the small gain wavelength range from 1160 nm to 1200 nm. The stack-and-draw or pit-in-jacket method is employed to fabricate two Yb-HS-SPBGFs. Both of the fiber shows optical filtering property for eliminating ASE in the large gain wavelength range from 1030 nm to 1130 nm and enough high birefringence for maintaining linear polarization, thanks to the photonic bandgap effect and the induced birefringence of the hybrid structure. The fiber attenuation of the Yb-HS-SPBGF fabricated by the pit-in-jacket method is much lower than that of the Yb-HS-SPBGF fabricated by stack-and-draw method. Linearly-polarized single stage fiber lasers using Yb-HS-SPBGFs are also demonstrated. Laser oscillation at 1180 nm is confirmed without parasitic lasing in the fiber lasers. High output power and high slope efficiency in linearly-polarized single-cavity fiber laser using the low-loss Yb-HS-SPGF fabricated by the pit-in-jacket method are achieved. Narrow linewidth, high polarization extinction ratio and high beam quality are also confirmed, which are required for high-efficient frequency-doubling. A compact and high-power yellow-orange frequency-doubling laser would be realized by using a linearly-polarized single-cavity fiber laser employing a low-loss Yb-HS-SPBGF.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/transele.E94.C.1145/_p
Copy
@ARTICLE{e94-c_7_1145,
author={Masahiro KASHIWAGI, Katsuhiro TAKENAGA, Kentaro ICHII, Tomoharu KITABAYASHI, Shoji TANIGAWA, Kensuke SHIMA, Shoichiro MATSUO, Munehisa FUJIMAKI, Kuniharu HIMENO, },
journal={IEICE TRANSACTIONS on Electronics},
title={Yb-Doped and Hybrid-Structured Solid Photonic Bandgap Fibers and Linearly-Polarized Fiber Lasers Oscillating above 1160 nm},
year={2011},
volume={E94-C},
number={7},
pages={1145-1152},
abstract={We review our recent work on Yb-doped and hybrid-structured solid photonic bandgap fibers (Yb-HS-SPBGFs) for linearly-polarized fiber lasers oscillating in the small gain wavelength range from 1160 nm to 1200 nm. The stack-and-draw or pit-in-jacket method is employed to fabricate two Yb-HS-SPBGFs. Both of the fiber shows optical filtering property for eliminating ASE in the large gain wavelength range from 1030 nm to 1130 nm and enough high birefringence for maintaining linear polarization, thanks to the photonic bandgap effect and the induced birefringence of the hybrid structure. The fiber attenuation of the Yb-HS-SPBGF fabricated by the pit-in-jacket method is much lower than that of the Yb-HS-SPBGF fabricated by stack-and-draw method. Linearly-polarized single stage fiber lasers using Yb-HS-SPBGFs are also demonstrated. Laser oscillation at 1180 nm is confirmed without parasitic lasing in the fiber lasers. High output power and high slope efficiency in linearly-polarized single-cavity fiber laser using the low-loss Yb-HS-SPGF fabricated by the pit-in-jacket method are achieved. Narrow linewidth, high polarization extinction ratio and high beam quality are also confirmed, which are required for high-efficient frequency-doubling. A compact and high-power yellow-orange frequency-doubling laser would be realized by using a linearly-polarized single-cavity fiber laser employing a low-loss Yb-HS-SPBGF.},
keywords={},
doi={10.1587/transele.E94.C.1145},
ISSN={1745-1353},
month={July},}
Copy
TY - JOUR
TI - Yb-Doped and Hybrid-Structured Solid Photonic Bandgap Fibers and Linearly-Polarized Fiber Lasers Oscillating above 1160 nm
T2 - IEICE TRANSACTIONS on Electronics
SP - 1145
EP - 1152
AU - Masahiro KASHIWAGI
AU - Katsuhiro TAKENAGA
AU - Kentaro ICHII
AU - Tomoharu KITABAYASHI
AU - Shoji TANIGAWA
AU - Kensuke SHIMA
AU - Shoichiro MATSUO
AU - Munehisa FUJIMAKI
AU - Kuniharu HIMENO
PY - 2011
DO - 10.1587/transele.E94.C.1145
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E94-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 2011
AB - We review our recent work on Yb-doped and hybrid-structured solid photonic bandgap fibers (Yb-HS-SPBGFs) for linearly-polarized fiber lasers oscillating in the small gain wavelength range from 1160 nm to 1200 nm. The stack-and-draw or pit-in-jacket method is employed to fabricate two Yb-HS-SPBGFs. Both of the fiber shows optical filtering property for eliminating ASE in the large gain wavelength range from 1030 nm to 1130 nm and enough high birefringence for maintaining linear polarization, thanks to the photonic bandgap effect and the induced birefringence of the hybrid structure. The fiber attenuation of the Yb-HS-SPBGF fabricated by the pit-in-jacket method is much lower than that of the Yb-HS-SPBGF fabricated by stack-and-draw method. Linearly-polarized single stage fiber lasers using Yb-HS-SPBGFs are also demonstrated. Laser oscillation at 1180 nm is confirmed without parasitic lasing in the fiber lasers. High output power and high slope efficiency in linearly-polarized single-cavity fiber laser using the low-loss Yb-HS-SPGF fabricated by the pit-in-jacket method are achieved. Narrow linewidth, high polarization extinction ratio and high beam quality are also confirmed, which are required for high-efficient frequency-doubling. A compact and high-power yellow-orange frequency-doubling laser would be realized by using a linearly-polarized single-cavity fiber laser employing a low-loss Yb-HS-SPBGF.
ER -