Author Search Result

[Author] Wen JI(11hit)

1-11hit
  • Laplacian Support Vector Machines with Multi-Kernel Learning

    Lihua GUO  Lianwen JIN  

     
    LETTER-Pattern Recognition

      Vol:
    E94-D No:2
      Page(s):
    379-383

    The Laplacian support vector machine (LSVM) is a semi-supervised framework that uses manifold regularization for learning from labeled and unlabeled data. However, the optimal kernel parameters of LSVM are difficult to obtain. In this paper, we propose a multi-kernel LSVM (MK-LSVM) method using multi-kernel learning formulations in combination with the LSVM. Our learning formulations assume that a set of base kernels are grouped, and employ l2 norm regularization for automatically seeking the optimal linear combination of base kernels. Experimental testing reveals that our method achieves better performance than the LSVM alone using synthetic data, the UCI Machine Learning Repository, and the Caltech database of Generic Object Classification.

  • A Frequency Estimation Algorithm for High Precision Monitoring of Significant Space Targets Open Access

    Ze Fu GAO  Wen Ge YANG  Yi Wen JIAO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:7
      Page(s):
    1058-1061

    Space is becoming increasingly congested and contested, which calls for effective means to conduct effective monitoring of high-value space assets, especially in Space Situational Awareness (SSA) missions, while there are imperfections in existing methods and corresponding algorithms. To overcome such a problem, this letter proposes an algorithm for accurate Connected Element Interferometry (CEI) in SSA based on more interpolation information and iterations. Simulation results show that: (i) after iterations, the estimated asymptotic variance of the proposed method can basically achieve uniform convergence, and the ratio of it to ACRB is 1.00235 in δ0 ∈ [-0.5, 0.5], which is closer to 1 than the current best AM algorithms; (ii) In the interval of SNR ∈ [-14dB, 0dB], the estimation error of the proposed algorithm decreases significantly, which is basically comparable to CRLB (maintains at 1.236 times). The research of this letter could play a significant role in effective monitoring and high-precision tracking and measurement with significant space targets during futuristic SSA missions.

  • A High-Performance Antenna Array Signal Processing Method in Deep Space Communication Open Access

    Yi Wen JIAO  Ze Fu GAO  Wen Ge YANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/25
      Vol:
    E107-A No:7
      Page(s):
    1062-1065

    In future deep space communication missions, VLBI (Very Long Baseline Interferometry) based on antenna array technology remains a critical detection method, which urgently requires the improvement of synthesis performance for antenna array signals. Considering this, focusing on optimizing the traditional antenna grouping method applied in the phase estimation algorithm, this letter proposes a “L/2 to L/2” antenna grouping method based on the maximum correlation signal-to-noise ratio (SNR). Following this idea, a phase difference estimation algorithm named “Couple” is presented. Theoretical analysis and simulation verification illustrate that: when ρ < -10dB, the proposed “Couple” has the highest performance; increasing the number of antennas can significantly improve its synthetic loss performance and robustness. The research of this letter indicates a promising potential in supporting the rising deep space exploration and communication missions.

  • High Stability Code Tracking for Band-Limited DSSS Systems Open Access

    Zhiwei LU  Yiwen JIAO  Yudi CHEN  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:11
      Page(s):
    706-718

    In this paper, we study the problem of high stability code tracking for band-limited direct sequence spread spectrum (DSSS) systems. In band-limited DSSS systems carrying critical applications, high stability is required in addition to low error variance for code tracking. Therefore, we propose a high stability code tracking method for band-limited DSSS systems, which constructs frequency domain vectors from the received signal, reduces the dimension of the vectors by frequency domain integration and dump, and estimates the time-delay error by the subspace method. We also give a closed-form expression for the steady-state time-delay error variance of the proposed method, which can be used to analyze the error variance performance theoretically and design proper band-limited DSSS systems. The theoretical analysis and simulation results show that the proposed method is able to enhance both the maximum and linear code tracking ranges, thus realizing high stability code tracking, and has constant error variance performance and appropriate computational complexity.

  • Dimensionality Reduction by Locally Linear Discriminant Analysis for Handwritten Chinese Character Recognition

    Xue GAO  Jinzhi GUO  Lianwen JIN  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:10
      Page(s):
    2533-2543

    Linear Discriminant Analysis (LDA) is one of the most popular dimensionality reduction techniques in existing handwritten Chinese character (HCC) recognition systems. However, when used for unconstrained handwritten Chinese character recognition, the traditional LDA algorithm is prone to two problems, namely, the class separation problem and multimodal sample distributions. To deal with these problems,we propose a new locally linear discriminant analysis (LLDA) method for handwritten Chinese character recognition.Our algorithm operates as follows. (1) Using the clustering algorithm, find clusters for the samples of each class. (2) Find the nearest neighboring clusters from the remaining classes for each cluster of one class. Then, use the corresponding cluster means to compute the between-class scatter matrix in LDA while keeping the within-class scatter matrix unchanged. (3) Finally, apply feature vector normalization to further improve the class separation problem. A series of experiments on both the HCL2000 and CASIA Chinese character handwriting databases show that our method can effectively improve recognition performance, with a reduction in error rate of 28.7% (HCL2000) and 16.7% (CASIA) compared with the traditional LDA method.Our algorithm also outperforms DLA (Discriminative Locality Alignment,one of the representative manifold learning-based dimensionality reduction algorithms proposed recently). Large-set handwritten Chinese character recognition experiments also verified the effectiveness of our proposed approach.

  • A SOM-CNN Algorithm for NLOS Signal Identification

    Ze Fu GAO  Hai Cheng TAO   Qin Yu ZHU  Yi Wen JIAO  Dong LI  Fei Long MAO  Chao LI  Yi Tong SI  Yu Xin WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    117-132

    Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.

  • Discrimination between Upstairs and Downstairs Based on Accelerometer

    Yang XUE  Lianwen JIN  

     
    LETTER

      Vol:
    E94-D No:6
      Page(s):
    1173-1177

    An algorithm for the discrimination between human upstairs and downstairs using a tri-axial accelerometer is presented in this paper, which consists of vertical acceleration calibration, extraction of two kinds of features (Interquartile Range and Wavelet Energy), effective feature subset selection with the wrapper approach, and SVM classification. The proposed algorithm can recognize upstairs and downstairs with 95.64% average accuracy for different sensor locations, i.e. located on the subject's waist belt, in the trousers pocket, and in the shirt pocket. Even for the mixed data from all sensor locations, the average recognition accuracy can reach 94.84%. Experimental results have successfully validated the effectiveness of the proposed method.

  • MPTCP-meLearning: A Multi-Expert Learning-Based MPTCP Extension to Enhance Multipathing Robustness against Network Attacks

    Yuanlong CAO  Ruiwen JI  Lejun JI  Xun SHAO  Gang LEI  Hao WANG  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-D No:11
      Page(s):
    1795-1804

    With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput improvement. However, the MPTCP performance can be seriously affected by the use of a poor-performing path in multipath transmission, especially in the presence of network attacks, in which an MPTCP path would abrupt and frequent become underperforming caused by attacks. In this paper, we propose a multi-expert Learning-based MPTCP variant, called MPTCP-meLearning, to enhance MPTCP performance robustness against network attacks. MPTCP-meLearning introduces a new kind of predictor to possibly achieve better quality prediction accuracy for each of multiple paths, by leveraging a group of representative formula-based predictors. MPTCP-meLearning includes a novel mechanism to intelligently manage multiple paths in order to possibly mitigate the out-of-order reception and receive buffer blocking problems. Experimental results demonstrate that MPTCP-meLearning can achieve better transmission performance and quality of service than the baseline MPTCP scheme.

  • A High Performance Partially-Parallel Irregular LDPC Decoder Based on Sum-Delta Message Passing Schedule

    Wen JI  Yuta ABE  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER-Embedded, Real-Time and Reconfigurable Systems

      Vol:
    E91-A No:12
      Page(s):
    3622-3629

    In this paper, we propose a partially-parallel irregular LDPC decoder based on IEEE 802.11n standard targeting high throughput and small area applications. The design is based on a novel sum-delta message passing algorithm characterized as follows: (i) Decoding throughput is greatly improved by utilizing the difference value between the updated and the original value to remove redundant computations. (ii) Registers and memory are optimized to store only the frequently used messages to decrease the hardware cost. (iii) Techniques such as binary sorting, parallel column operation, high performance pipelining are used to further speed up the message passing procedure. The synthesis result in TSMC 0.18 CMOS technology demonstrates that for (648,324) irregular LDPC code, our decoder achieves 7.5X improvement in throughput, which reaches 402 Mbps at the frequency of 200 MHz, with 11% area reduction. The synthesis result also demonstrates the competitiveness to the fully-parallel regular LDPC decoders in terms of the tradeoff between throughput, area and power.

  • Activity Recognition Based on an Accelerometer in a Smartphone Using an FFT-Based New Feature and Fusion Methods

    Yang XUE  Yaoquan HU  Lianwen JIN  

     
    LETTER-Human-computer Interaction

      Vol:
    E97-D No:8
      Page(s):
    2182-2186

    With the development of personal electronic equipment, the use of a smartphone with a tri-axial accelerometer to detect human physical activity is becoming popular. In this paper, we propose a new feature based on FFT for activity recognition from tri-axial acceleration signals. To improve the classification performance, two fusion methods, minimal distance optimization (MDO) and variance contribution ranking (VCR), are proposed. The new proposed feature achieves a recognition rate of 92.41%, which outperforms six traditional time- or frequency-domain features. Furthermore, the proposed fusion methods effectively improve the recognition rates. In particular, the average accuracy based on class fusion VCR (CFVCR) is 97.01%, which results in an improvement in accuracy of 4.14% compared with the results without any fusion. Experiments confirm the effectiveness of the new proposed feature and fusion methods.

  • A New Face Relighting Method Based on Edge-Preserving Filter

    Lingyu LIANG  Lianwen JIN  

     
    LETTER-Computer Graphics

      Vol:
    E96-D No:12
      Page(s):
    2904-2907

    We propose a new face relighting method using an illuminance template generated from a single reference portrait. First, the reference is wrapped according to the shape of the target. Second, we employ a new spatially variant edge-preserving smoothing filter to remove the facial identity and texture details of the wrapped reference, and obtain the illumination template. Finally, we relight the target with the template in CIELAB color space. Experiments show the effectiveness of our method for both grayscale and color faces taken from different databases, and the comparisons with previous works demonstrate a better relighting effect produced by our method.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.