Keyword Search Result

[Keyword] CI(5693hit)

221-240hit(5693hit)

  • A Bus Crowdedness Sensing System Using Deep-Learning Based Object Detection

    Wenhao HUANG  Akira TSUGE  Yin CHEN  Tadashi OKOSHI  Jin NAKAZAWA  

     
    PAPER

      Pubricized:
    2022/06/23
      Vol:
    E105-D No:10
      Page(s):
    1712-1720

    Crowdedness of buses is playing an increasingly important role in the disease control of COVID-19. The lack of a practical approach to sensing the crowdedness of buses is a major problem. This paper proposes a bus crowdedness sensing system which exploits deep learning-based object detection to count the numbers of passengers getting on and off a bus and thus estimate the crowdedness of buses in real time. In our prototype system, we combine YOLOv5s object detection model with Kalman Filter object tracking algorithm to implement a sensing algorithm running on a Jetson nano-based vehicular device mounted on a bus. By using the driving recorder video data taken from real bus, we experimentally evaluate the performance of the proposed sensing system to verify that our proposed system system improves counting accuracy and achieves real-time processing at the Jetson Nano platform.

  • Coupler Design and Analysis of Capacitive Wireless Power Charging for Implantable Medical Devices

    Marimo MATSUMOTO  Masaya TAMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:9
      Page(s):
    398-406

    Couplers in a film-type capacitive wireless power charging (CWC) system for an implantable medical device were designed and analyzed in this work. Due to the high conductivity of the human body, two paths contribute to the power transmission, namely a high-frequency current and an electric field. This was confirmed by an equivalent circuit of the system. During analysis of the system, we used pig skin with subcutaneous fat, which has a high affinity with the human body, to search for a highly efficient electrode shape. Subsequently, we fabricated the designed coupler and measured ηmax. An ηmax of 56.6% was obtained for a half-circular coupler with a radius of 20 mm and a distance of 10 mm between adjacent couplers. This study will contribute to the realization of implantable devices that can be recharged during breaks or while sleeping at home and is expected to significantly reduce the burden on patients.

  • On the Sum-of-Squares of Differential Distribution Table for (n, n)-Functions

    Rong CHENG  Yu ZHOU  Xinfeng DONG  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/10
      Vol:
    E105-A No:9
      Page(s):
    1322-1329

    S-box is one of the core components of symmetric cryptographic algorithms, but differential distribution table (DDT) is an important tool to research some properties of S-boxes to resist differential attacks. In this paper, we give a relationship between the sum-of-squares of DDT and the sum-of-squares indicator of (n, m)-functions based on the autocorrelation coefficients. We also get some upper and lower bounds on the sum-of-squares of DDT of balanced (n, m)-functions, and prove that the sum-of-squares of DDT of (n, m)-functions is affine invariant under affine affine equivalent. Furthermore, we obtain a relationship between the sum-of-squares of DDT and the signal-to-noise ratio of (n, m)-functions. In addition, we calculate the distributions of the sum-of-squares of DDT for all 3-bit S-boxes, the 4-bit optimal S-boxes and all 302 balanced S-boxes (up to affine equivalence), data experiments verify our results.

  • Constant-Round Fair SS-4PC for Private Decision Tree Evaluation

    Hikaru TSUCHIDA  Takashi NISHIDE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/09
      Vol:
    E105-A No:9
      Page(s):
    1270-1288

    Multiparty computation (MPC) is a cryptographic method that enables a set of parties to compute an arbitrary joint function of the private inputs of all parties and does not reveal any information other than the output. MPC based on a secret sharing scheme (SS-MPC) and garbled circuit (GC) is known as the most common MPC schemes. Another cryptographic method, homomorphic encryption (HE), computes an arbitrary function represented as a circuit by using ciphertexts without decrypting them. These technologies are in a trade-off relationship for the communication/round complexities, and the computation cost. The private decision tree evaluation (PDTE) is one of the key applications of these technologies. There exist several constant-round PDTE protocols based on GC, HE, or the hybrid schemes that are secure even if a malicious adversary who can deviate from protocol specifications corrupts some parties. There also exist other protocols based only on SS-MPC that are secure only if a semi-honest adversary who follows the protocol specification corrupts some parties. However, to the best of our knowledge, there are currently no constant-round PDTE protocols based only on SS-MPC that are secure against a malicious adversary. In this work, we propose a constant-round four-party PDTE protocol that achieves malicious security. Our protocol provides the PDTE securely and efficiently even when the communication environment has a large latency.

  • Energy-Efficient KBP: Kernel Enhancements for Low-Latency and Energy-Efficient Networking Open Access

    Kei FUJIMOTO  Ko NATORI  Masashi KANEKO  Akinori SHIRAGA  

     
    PAPER-Network

      Pubricized:
    2022/03/14
      Vol:
    E105-B No:9
      Page(s):
    1039-1052

    Real-time applications are becoming more and more popular, and due to the demand for more compact and portable user devices, offloading terminal processes to edge servers is being considered. Moreover, it is necessary to process packets with low latency on edge servers, which are often virtualized for operability. When trying to achieve low-latency networking, the increase in server power consumption due to performance tuning and busy polling for fast packet receiving becomes a problem. Thus, we design and implement a low-latency and energy-efficient networking system, energy-efficient kernel busy poll (EE-KBP), which meets four requirements: (A) low latency in the order of microseconds for packet forwarding in a virtual server, (B) lower power consumption than existing solutions, (C) no need for application modification, and (D) no need for software redevelopment with each kernel security update. EE-KBP sets a polling thread in a Linux kernel that receives packets with low latency in polling mode while packets are arriving, and when no packets are arriving, it sleeps and lowers the CPU operating frequency. Evaluations indicate that EE-KBP achieves microsecond-order low-latency networking under most traffic conditions, and 1.4× to 3.1× higher throughput with lower power consumption than NAPI used in a Linux kernel.

  • Improving Image Pair Selection for Large Scale Structure from Motion by Introducing Modified Simpson Coefficient

    Takaharu KATO  Ikuko SHIMIZU  Tomas PAJDLA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1590-1599

    Selecting visually overlapping image pairs without any prior information is an essential task of large-scale structure from motion (SfM) pipelines. To address this problem, many state-of-the-art image retrieval systems adopt the idea of bag of visual words (BoVW) for computing image-pair similarity. In this paper, we present a method for improving the image pair selection using BoVW. Our method combines a conventional vector-based approach and a set-based approach. For the set similarity, we introduce a modified version of the Simpson (m-Simpson) coefficient. We show the advantage of this measure over three typical set similarity measures and demonstrate that the combination of vector similarity and the m-Simpson coefficient effectively reduces false positives and increases accuracy. To discuss the choice of vocabulary construction, we prepared both a sampled vocabulary on an evaluation dataset and a basic pre-trained vocabulary on a training dataset. In addition, we tested our method on vocabularies of different sizes. Our experimental results show that the proposed method dramatically improves precision scores especially on the sampled vocabulary and performs better than the state-of-the-art methods that use pre-trained vocabularies. We further introduce a method to determine the k value of top-k relevant searches for each image and show that it obtains higher precision at the same recall.

  • Dispersion on Intervals

    Tetsuya ARAKI  Hiroyuki MIYATA  Shin-ichi NAKANO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/08
      Vol:
    E105-A No:9
      Page(s):
    1181-1186

    Given a set of n disjoint intervals on a line and an integer k, we want to find k points in the intervals so that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time intervals on a timeline, each of which is a time span we are allowed to check something, and an integer k, which is the number of times we will check something, we plan k checking times so that the checks occur at equal time intervals as much as possible, that is, we want to maximize the minimum time interval between the k checking times. We call the problem the k-dispersion problem on intervals. If we need to choose exactly one point in each interval, so k=n, and the disjoint intervals are given in the sorted order on the line, then two O(n) time algorithms to solve the problem are known. In this paper we give the first O(n) time algorithm to solve the problem for any constant k. Our algorithm works even if the disjoint intervals are given in any (not sorted) order. If the disjoint intervals are given in the sorted order on the line, then, by slightly modifying the algorithm, one can solve the problem in O(log n) time. This is the first sublinear time algorithm to solve the problem. Also we show some results on the k-dispersion problem on disks, including an FPTAS.

  • An Underwater DOA Estimation Method under Unknown Acoustic Velocity with L-Shaped Array for Wide-Band Signals

    Gengxin NING  Yushen LIN  Shenjie JIANG  Jun ZHANG  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/03/09
      Vol:
    E105-A No:9
      Page(s):
    1289-1297

    The performance of conventional direction of arrival (DOA) methods is susceptible to the uncertainty of acoustic velocity in the underwater environment. To solve this problem, an underwater DOA estimation method with L-shaped array for wide-band signals under unknown acoustic velocity is proposed in this paper. The proposed method refers to the idea of incoherent signal subspace method and Root-MUSIC to obtain two sets of average roots corresponding to the subarray of the L-shaped array. And the geometric relationship between two vertical linear arrays is employed to derive the expression of DOA estimation with respect to the two average roots. The acoustic velocity variable in the DOA estimation expression can be eliminated in the proposed method. The simulation results demonstrate that the proposed method is more accurate and robust than other methods in an unknown acoustic velocity environment.

  • Joint User Association and Spectrum Allocation in Satellite-Terrestrial Integrated Networks

    Wenjing QIU  Aijun LIU  Chen HAN  Aihong LU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/15
      Vol:
    E105-B No:9
      Page(s):
    1063-1077

    This paper investigates the joint problem of user association and spectrum allocation in satellite-terrestrial integrated networks (STINs), where a low earth orbit (LEO) satellite access network cooperating with terrestrial networks constitutes a heterogeneous network, which is beneficial in terms of both providing seamless coverage as well as improving the backhaul capacity for the dense network scenario. However, the orbital movement of satellites results in the dynamic change of accessible satellites and the backhaul capacities. Moreover, spectrum sharing may be faced with severe co-channel interferences (CCIs) caused by overlapping coverage of multiple access points (APs). This paper aims to maximize the total sum rate considering the influences of the dynamic feature of STIN, backhaul capacity limitation and interference management. The optimization problem is then decomposed into two subproblems: resource allocation for terrestrial communications and satellite communications, which are both solved by matching algorithms. Finally, simulation results show the effectiveness of our proposed scheme in terms of STIN's sum rate and spectrum efficiency.

  • A Trade-Off between Memory Stability and Connection Sparsity in Simple Binary Associative Memories

    Kento SAKA  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Pubricized:
    2022/03/29
      Vol:
    E105-A No:9
      Page(s):
    1377-1380

    This letter studies a biobjective optimization problem in binary associative memories characterized by ternary connection parameters. First, we introduce a condition of parameters that guarantees storage of any desired memories and suppression of oscillatory behavior. Second, we define a biobjective problem based on two objectives that evaluate uniform stability of desired memories and sparsity of connection parameters. Performing precise numerical analysis for typical examples, we have clarified existence of a trade-off between the two objectives.

  • Integral Cryptanalysis on Reduced-Round KASUMI

    Nobuyuki SUGIO  Yasutaka IGARASHI  Sadayuki HONGO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/04/22
      Vol:
    E105-A No:9
      Page(s):
    1309-1316

    Integral cryptanalysis is one of the most powerful attacks on symmetric key block ciphers. Attackers preliminarily search integral characteristics of a target cipher and use them to perform the key recovery attack. Todo proposed a novel technique named the bit-based division property to find integral characteristics. Xiang et al. extended the Mixed Integer Linear Programming (MILP) method to search integral characteristics of lightweight block ciphers based on the bit-based division property. In this paper, we apply these techniques to the symmetric key block cipher KASUMI which was developed by modifying MISTY1. As a result, we found new 4.5-round characteristics of KASUMI for the first time. We show that 7-round KASUMI is attackable with 263 data and 2120 encryptions.

  • Sensitivity Enhanced Edge-Cloud Collaborative Trust Evaluation in Social Internet of Things

    Peng YANG  Yu YANG  Puning ZHANG  Dapeng WU  Ruyan WANG  

     
    PAPER-Network Management/Operation

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1053-1062

    The integration of social networking concepts into the Internet of Things has led to the Social Internet of Things (SIoT) paradigm, and trust evaluation is essential to secure interaction in SIoT. In SIoT, when resource-constrained nodes respond to unexpected malicious services and malicious recommendations, the trust assessment is prone to be inaccurate, and the existing architecture has the risk of privacy leakage. An edge-cloud collaborative trust evaluation architecture in SIoT is proposed in this paper. Utilize the resource advantages of the cloud and the edge to complete the trust assessment task collaboratively. An evaluation algorithm of relationship closeness between nodes is designed to evaluate neighbor nodes' reliability in SIoT. A trust computing algorithm with enhanced sensitivity is proposed, considering the fluctuation of trust value and the conflict between trust indicators to enhance the sensitivity of identifying malicious behaviors. Simulation results show that compared with traditional methods, the proposed trust evaluation method can effectively improve the success rate of interaction and reduce the false detection rate when dealing with malicious services and malicious recommendations.

  • Moon-or-Sun, Nagareru, and Nurimeizu are NP-Complete

    Chuzo IWAMOTO  Tatsuya IDE  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/01
      Vol:
    E105-A No:9
      Page(s):
    1187-1194

    Moon-or-Sun, Nagareru, and Nurimeizu are Nikoli's pencil puzzles. We study the computational complexity of Moon-or-Sun, Nagareru, and Nurimeizu puzzles. It is shown that deciding whether a given instance of each puzzle has a solution is NP-complete.

  • Ray Tracing Acceleration using Rank Minimization for Radio Map Simulation

    Norisato SUGA  Ryohei SASAKI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/02/22
      Vol:
    E105-A No:8
      Page(s):
    1157-1161

    In this letter, a ray tracing (RT) acceleration method based on rank minimization is proposed. RT is a general tool used to simulate wireless communication environments. However, the simulation is time consuming because of the large number of ray calculations. This letter focuses on radio map interpolation as an acceleration approach. In the conventional methods cannot appropriately estimate short-span variation caused by multipath fading. To overcome the shortage of the conventional methods, we adopt rank minimization based interpolation. A computational simulation using commercial RT software revealed that the interpolation accuracy of the proposed method was higher than those of other radio map interpolation methods and that RT simulation can be accelerated approximate five times faster with the missing rate of 0.8.

  • An Interpretable Feature Selection Based on Particle Swarm Optimization

    Yi LIU  Wei QIN  Qibin ZHENG  Gensong LI  Mengmeng LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2022/05/09
      Vol:
    E105-D No:8
      Page(s):
    1495-1500

    Feature selection based on particle swarm optimization is often employed for promoting the performance of artificial intelligence algorithms. However, its interpretability has been lacking of concrete research. Improving the stability of the feature selection method is a way to effectively improve its interpretability. A novel feature selection approach named Interpretable Particle Swarm Optimization is developed in this paper. It uses four data perturbation ways and three filter feature selection methods to obtain stable feature subsets, and adopts Fuch map to convert them to initial particles. Besides, it employs similarity mutation strategy, which applies Tanimoto distance to choose the nearest 1/3 individuals to the previous particles to implement mutation. Eleven representative algorithms and four typical datasets are taken to make a comprehensive comparison with our proposed approach. Accuracy, F1, precision and recall rate indicators are used as classification measures, and extension of Kuncheva indicator is employed as the stability measure. Experiments show that our method has a better interpretability than the compared evolutionary algorithms. Furthermore, the results of classification measures demonstrate that the proposed approach has an excellent comprehensive classification performance.

  • A Slotted Access-Inspired Group Paging Scheme for Resource Efficiency in Cellular MTC Networks

    Linh T. HOANG  Anh-Tuan H. BUI  Chuyen T. NGUYEN  Anh T. PHAM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/14
      Vol:
    E105-B No:8
      Page(s):
    944-958

    Deployment of machine-type communications (MTCs) over the current cellular network could lead to severe overloading of the radio access network of Long Term Evolution (LTE)-based systems. This paper proposes a slotted access-based solution, called the Slotted Access For Group Paging (SAFGP), to cope with the paging-induced MTC traffic. The proposed SAFGP splits paged devices into multiple access groups, and each group is then allocated separate radio resources on the LTE's Physical Random Access Channel (PRACH) in a periodic manner during the paging interval. To support the proposed scheme, a new adaptive barring algorithm is proposed to stabilize the number of successful devices in each dedicated access slot. The objective is to let as few devices transmitting preambles in an access slot as possible while ensuring that the number of preambles selected by exactly one device approximates the maximum number of uplink grants that can be allocated by the eNB for an access slot. Analysis and simulation results demonstrate that, given the same amount of time-frequency resources, the proposed method significantly improves the access success and resource utilization rates at the cost of slightly increasing the access delay compared to state-of-the-art methods.

  • Experimental Extraction Method for Primary and Secondary Parameters of Shielded-Flexible Printed Circuits

    Taiki YAMAGIWA  Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2022/02/28
      Vol:
    E105-B No:8
      Page(s):
    913-922

    In this paper, an experimental method is proposed for extracting the primary and secondary parameters of transmission lines with frequency dispersion. So far, there is no report of these methods being applied to transmission lines with frequency dispersion. This paper provides an experimental evaluation means of transmission lines with frequency dispersion and clarifies the issues when applying the proposed method. In the proposed experimental method, unnecessary components such as connectors are removed by using a simple de-embedding method. The frequency response of the primary and secondary parameters extracted by using the method reproduced all dispersion characteristics of a transmission line with frequency dispersion successfully. It is demonstrated that an accurate RLGC equivalent-circuit model is obtained experimentally, which can be used to quantitatively evaluate the frequency/time responses of shielded-FPC with frequency dispersion and to validate RLGC equivalent-circuit models extracted by using electromagnetic field analysis.

  • Modeling Polarization Caused by Empathetic and Repulsive Reaction in Online Social Network

    Naoki HIRAKURA  Masaki AIDA  Konosuke KAWASHIMA  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2022/02/16
      Vol:
    E105-B No:8
      Page(s):
    990-1001

    While social media is now used by many people and plays a role in distributing information, it has recently created an unexpected problem: the actual shrinkage of information sources. This is mainly due to the ease of connecting people with similar opinions and the recommendation system. Biased information distribution promotes polarization that divides people into multiple groups with opposing views. Also, people may receive only the seemingly positive information that they prefer, or may trigger them into holding onto their opinions more strongly when they encounter opposing views. This, combined with the characteristics of social media, is accelerating the polarization of opinions and eventually social division. In this paper, we propose a model of opinion formation on social media to simulate polarization. While based on the idea that opinion neutrality is only relative, this model provides new techniques for dealing with polarization.

  • SeCAM: Tightly Accelerate the Image Explanation via Region-Based Segmentation

    Phong X. NGUYEN  Hung Q. CAO  Khang V. T. NGUYEN  Hung NGUYEN  Takehisa YAIRI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/11
      Vol:
    E105-D No:8
      Page(s):
    1401-1417

    In recent years, there has been an increasing trend of applying artificial intelligence in many different fields, which has a profound and direct impact on human life. Consequently, this raises the need to understand the principles of model making predictions. Since most current high-precision models are black boxes, neither the AI scientist nor the end-user profoundly understands what is happening inside these models. Therefore, many algorithms are studied to explain AI models, especially those in the image classification problem in computer vision such as LIME, CAM, GradCAM. However, these algorithms still have limitations, such as LIME's long execution time and CAM's confusing interpretation of concreteness and clarity. Therefore, in this paper, we will propose a new method called Segmentation - Class Activation Mapping (SeCAM)/ This method combines the advantages of these algorithms above while at simultaneously overcoming their disadvantages. We tested this algorithm with various models, including ResNet50, InceptionV3, and VGG16 from ImageNet Large Scale Visual Recognition Challenge (ILSVRC) data set. Outstanding results were achieved when the algorithm has met all the requirements for a specific explanation in a remarkably short space of time.

  • A Polynomial-Time Algorithm for Finding a Spanning Tree with Non-Terminal Set VNT on Circular-Arc Graphs

    Shin-ichi NAKAYAMA  Shigeru MASUYAMA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/05/12
      Vol:
    E105-D No:8
      Page(s):
    1373-1382

    Given a graph G=(V, E), where V and E are vertex and edge sets of G, and a subset VNT of vertices called a non-terminal set, a spanning tree with a non-terminal set VNT, denoted by STNT, is a connected and acyclic spanning subgraph of G that contains all vertices of V where each vertex in a non-terminal set is not a leaf. On general graphs, the problem of finding an STNT of G is known to be NP-hard. In this paper, we show that if G is a circular-arc graph then finding an STNT of G is polynomially solvable with respect to the number of vertices.

221-240hit(5693hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.