1-5hit |
Yutaka ARAYASHIKI Takashi KAMIZONO Yukio OHKUBO Taisuke MATSUMOTO Yoshiaki AMANO Yutaka MATSUOKA
We fabricated low-jitter 2:1 multiplexer (MUX) and 1:2 demultiplexer (DEMUX) modules for bit error rate testers that can be used for research into ultra-high-bitrate communication subsystems and devices with bitrates of over 100 Gbit/s. The 1:2 DEMUX IC design took into consideration an IC layout allowing module pin placement for optimal utility. With regard to mounting, the 2:1 MUX and 1:2 DEMUX modules were constructed using transmission lines of grounded coplanar waveguide (G-CPW) configuration, which offers excellent high-frequency characteristics. These modules operated at 113 Gbit/s with a low root mean square jitter of 548 fs and 587 fs, respectively.
Yutaka ARAYASHIKI Yukio OHKUBO Taisuke MATSUMOTO Yoshiaki AMANO Akio TAKAGI Yutaka MATSUOKA
We fabricated a 2:1 multiplexer IC (MUX) with a retiming function by using 1-µm self-aligned InP/InGaAs/InP double-heterojunction bipolar transistors (DHBTs) with emitter mesa passivation ledges. The MUX operated at 120 Gbit/s with a power dissipation of 1.27 W and output amplitude of 520 mV when measured on the wafer. When assembled in a module using V-connectors, the MUX operated at 113 Gbit/s with a 514-mV output amplitude and a power dissipation of 1.4 W.
Rachid DRIAD Robert E. MAKON Karl SCHNEIDER Ulrich NOWOTNY Rolf AIDAM Rudiger QUAY Michael SCHLECHTWEG Michael MIKULLA Gunter WEIMANN
In this paper, we report a manufacturable InP DHBT technology, suitable for medium scale mixed-signal and monolithic microwave integrated circuits. The InGaAs/InP DHBTs were grown by MBE and fabricated using conventional process techniques. Devices with an emitter junction area of 4.8 µm2 exhibited peak cutoff frequency (fT) and maximum oscillation frequency (fMAX) values of 265 and 305 GHz, respectively, and a breakdown voltage (BVCEo) of over 5 V. Using this technology, a set of mixed-signal IC building blocks for ≥ 80 Gbit/s fibre optical links, including distributed amplifiers (DA), voltage controlled oscillators (VCO), and multiplexers (MUX), have been successfully fabricated and operated at 80 Gbit/s and beyond.
Jean GODIN Agnieszka KONCZYKOWSKA Muriel RIET Jacques MOULU Philippe BERDAGUER Filipe JORGE
Various mixed-signal very-high-speed integrated circuits have been developed using InP DHBTs. These circuits have been designed for fiber-optic 43 Gbit/s transmissions applications. They include: on the transmitting side, a clocked driver and an EAM driver, as well as a PSBT/DQPSK precoder; on the receiving side, a sensitive decision circuit, a limiting amplifier and an eye monitor. System experiments made possible by these circuits include a 6 Tbit/s transmission on >6000 km distance.
Xin ZHU Dimitris PAVLIDIS Guangyuan ZHAO Philippe BOVE Hacene LAHRECHE Robert LANGER
We report for the first time the design, process and characterization of InP-based micrometer emitter InGaAlAs/GaAsSb/InP Double HBTs (DHBTs) and their microwave performance. The layer structure not only allows the implementation of InP collector free of current blocking, but also enables small turn-on voltage and ballistic launching of electrons due to the positive conduction band discontinuity of emitter to base. The DHBT structure was grown on nominal (001) InP substrates using MBE. Solid Si and CBr4 gas were used for n-type and p-type doing respectively. Fabricated large DHBTs showed high DC gain (> 80), small turn-on voltage 0.62 V, almost zero offset voltage, and nearly ideal base and collector current characteristics (ideality factors 1.0 for both B-E and B-C junctions). Small DHBTs demonstrated VCEO > 8 V and stable operation at high current density exceeding 100 kA/cm2. Maximum fT of 57 GHz and maximum fmax of 66 GHz were achieved from 1 20 µm2 devices at similar bias condition: JC = 8.0 104 A/cm2 and VCE =3.5 V. The InGaAlAs/GaAsSb/InP DHBTs appear to be a very promising HBT solution having simultaneous excellent RF and DC performances.