Keyword Search Result

[Keyword] ICA(6977hit)

81-100hit(6977hit)

  • Deeply Programmable Application Switch for Performance Improvement of KVS in Data Center Open Access

    Satoshi ITO  Tomoaki KANAYA  Akihiro NAKAO  Masato OGUCHI  Saneyasu YAMAGUCHI  

     
    PAPER

      Pubricized:
    2024/01/17
      Vol:
    E107-D No:5
      Page(s):
    659-673

    The concepts of programmable switches and software-defined networking (SDN) give developers flexible and deep control over the behavior of switches. We expect these concepts to dramatically improve the functionality of switches. In this paper, we focus on the concept of Deeply Programmable Networks (DPN), where data planes are programmable, and application switches based on DPN. We then propose a method to improve the performance of a key-value store (KVS) through an application switch. First, we explain the DPN and application switches. The DPN is a network that makes not only control planes but also data planes programmable. An application switch is a switch that implements some functions of network applications, such as database management system (DBMS). Second, we propose a method to improve the performance of Cassandra, one of the most popular key-value based DBMS, by implementing a caching function in a switch in a dedicated network such as a data center. The proposed method is expected to be effective even though it is a simple and traditional way because it is in the data path and the center of the network application. Third, we implement a switch with the caching function, which monitors the accessed data described in packets (Ethernet frames) and dynamically replaces the cached data in the switch, and then show that the proposed caching switch can significantly improve the KVS transaction performance with this implementation. In the case of our evaluation, our method improved the KVS transaction throughput by up to 47%.

  • Effect of Perceptually Uniform Color Space and Diversity of Chromaticity Components on Digital Signage and Image Sensor-Based Visible Light Communication Open Access

    Kazuya SHIMEI  Kentaro KOBAYASHI  Wataru CHUJO  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/08/07
      Vol:
    E107-A No:4
      Page(s):
    638-653

    We study a visible light communication (VLC) system that modulates data signals by changing the color components of image contents on a digital signage display, captures them with an image sensor, and demodulates them using image processing. This system requires that the modulated data signals should not be perceived by the human eye. Previous studies have proposed modulation methods with a chromaticity component that is difficult for the human eye to perceive, and we have also proposed a modulation method with perceptually uniform color space based on human perception characteristics. However, which chromaticity component performs better depends on the image contents, and the evaluation only for some specific image contents was not sufficient. In this paper, we evaluate the communication and visual quality of the modulation methods with chromaticity components for various standard images to clarify the superiority of the method with perceptually uniform color space. In addition, we propose a novel modulation and demodulation method using diversity combining to eliminate the dependency of performance on the image contents. Experimental results show that the proposed method can improve the communication and visual quality for almost all the standard images.

  • Overfitting Problem of ANN- and VSTF-Based Nonlinear Equalizers Trained on Repeated Random Bit Sequences Open Access

    Kai IKUTA  Jinya NAKAMURA  Moriya NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E107-B No:4
      Page(s):
    349-356

    In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.

  • Capacity and Reliability of Ionosphere Communication Channel Based on Multi-Carrier Modulation Technique and LUF-MUF Variation Open Access

    Varuliantor DEAR  Annis SIRADJ MARDIANI  Nandang DEDI  Prayitno ABADI  Baud HARYO PRANANTO   ISKANDAR  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:4
      Page(s):
    357-367

    Low capacity and reliability are the challenges in the development of ionosphere communication channel systems. To overcome this problem, one promising and state-of-the-art method is applying a multi-carrier modulation technique. Currently, the use of multi-carrier modulation technique is using a single transmission frequency with a bandwidth is no more than 24 kHz in real-world implementation. However, based on the range of the minimum and maximum ionospheric plasma frequency values, which could be in the MHz range, the use of these values as the main bandwidth in multi-carrier modulation techniques can optimize the use of available channel capacity. In this paper, we propose a multi-carrier modulation technique in combination with a model variation of Lowest Usable Frequency (LUF) and Maximum Usable Frequency (MUF) values as the main bandwidth to optimize the use of available channel capacity while also maintaining its reliability by following the variation of the ionosphere plasma frequency. To analyze its capacity and reliability, we performed a numeric simulation using a LUF-MUF model based on Long Short Term-Memory (LSTM) and Advanced Stand Alone Prediction System (ASAPS) in Near Vertical Incidence Skywave (NVIS) propagation mode with the assumption of perfect synchronization between transmitter and receiver with no Doppler and no time offsets. The results show the achievement of the ergodic channel capacity varies for every hour of the day, with values in the range of 10 Mbps and 100 Mbps with 0 to 20 dB SNR. Meanwhile, the reliability of the system is in the range of 8% to 100% for every hour of one day based on two different Mode Reliability calculation scenarios. The results also show that channel capacity and system reliability optimization are determined by the accuracy of the LUF-MUF model.

  • SimpleViTFi: A Lightweight Vision Transformer Model for Wi-Fi-Based Person Identification Open Access

    Jichen BIAN  Min ZHENG  Hong LIU  Jiahui MAO  Hui LI  Chong TAN  

     
    PAPER-Sensing

      Vol:
    E107-B No:4
      Page(s):
    377-386

    Wi-Fi-based person identification (PI) tasks are performed by analyzing the fluctuating characteristics of the Channel State Information (CSI) data to determine whether the person's identity is legitimate. This technology can be used for intrusion detection and keyless access to restricted areas. However, the related research rarely considers the restricted computing resources and the complexity of real-world environments, resulting in lacking practicality in some scenarios, such as intrusion detection tasks in remote substations without public network coverage. In this paper, we propose a novel neural network model named SimpleViTFi, a lightweight classification model based on Vision Transformer (ViT), which adds a downsampling mechanism, a distinctive patch embedding method and learnable positional embedding to the cropped ViT architecture. We employ the latest IEEE 802.11ac 80MHz CSI dataset provided by [1]. The CSI matrix is abstracted into a special “image” after pre-processing and fed into the trained SimpleViTFi for classification. The experimental results demonstrate that the proposed SimpleViTFi has lower computational resource overhead and better accuracy than traditional classification models, reflecting the robustness on LOS or NLOS CSI data generated by different Tx-Rx devices and acquired by different monitors.

  • 300-GHz-Band Dual-Band Bandstop Filter Based on Two Different Sized Split Ring Resonators Open Access

    Akihiko HIRATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:4
      Page(s):
    107-114

    For 6G mobile communications, it is important to realize a 300 GHz band bandpass filter that fits the occupied bandwidth of wireless communication system to prevent inter-system interference. This paper presents the design of a 300-GHz-band dual-band bandstop filter composed of two types of different sized split ring resonator (SRR) unit cells. The SRR unit cells are formed by a 5-μm-thick gold pattern on a 200-μm-thick quartz substrate. When two different-sized SRR unit cells are placed alternately on the same quartz substrate and the SRR unit cell size is over 260 μm, the stopbands of the dual-band bandstop filter are almost the same as those of the bandstop filter, which is composed of a single SRR unit cell. The insertion loss of the dual-band bandstop filter at 297.4 GHz is 1.8 dB and the 3-dB passband becomes 16.0 GHz (290.4-306.4 GHz). The attenuation in the two stopbands is greater than 20 dB. Six types of dual-band bandstop filters with different arrangement and different distance between SRR unit cells are prototyped, and the effect of the distance and arrangement between different sized SRR unit cells on the transmission characteristics of dual-band bandstop filters were clarified.

  • Pattern-Based Meta Graph Neural Networks for Argument Classifications Open Access

    Shiyao DING  Takayuki ITO  

     
    PAPER

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    451-458

    Despite recent advancements in utilizing meta-learning for addressing the generalization challenges of graph neural networks (GNN), their performance in argumentation mining tasks, such as argument classifications, remains relatively limited. This is primarily due to the under-utilization of potential pattern knowledge intrinsic to argumentation structures. To address this issue, our study proposes a two-stage, pattern-based meta-GNN method in contrast to conventional pattern-free meta-GNN approaches. Initially, our method focuses on learning a high-level pattern representation to effectively capture the pattern knowledge within an argumentation structure and then predicts edge types. It then utilizes a meta-learning framework in the second stage, designed to train a meta-learner based on the predicted edge types. This feature allows for rapid generalization to novel argumentation graphs. Through experiments on real English discussion datasets spanning diverse topics, our results demonstrate that our proposed method substantially outperforms conventional pattern-free GNN approaches, signifying a significant stride forward in this domain.

  • A Trie-Based Authentication Scheme for Approximate String Queries Open Access

    Yu WANG  Liangyong YANG  Jilian ZHANG  Xuelian DENG  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/12/20
      Vol:
    E107-D No:4
      Page(s):
    537-543

    Cloud computing has become the mainstream computing paradigm nowadays. More and more data owners (DO) choose to outsource their data to a cloud service provider (CSP), who is responsible for data management and query processing on behalf of DO, so as to cut down operational costs for the DO.  However, in real-world applications, CSP may be untrusted, hence it is necessary to authenticate the query result returned from the CSP.  In this paper, we consider the problem of approximate string query result authentication in the context of database outsourcing. Based on Merkle Hash Tree (MHT) and Trie, we propose an authenticated tree structure named MTrie for authenticating approximate string query results. We design efficient algorithms for query processing and query result authentication. To verify effectiveness of our method, we have conducted extensive experiments on real datasets and the results show that our proposed method can effectively authenticate approximate string query results.

  • Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation

    Shingo YASHIKI  Chako TAKAHASHI  Koutarou SUZUKI  

     
    LETTER

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    355-358

    This paper investigates the effects of backdoor attacks on graph neural networks (GNNs) trained through simple data augmentation by modifying the edges of the graph in graph classification. The numerical results show that GNNs trained with data augmentation remain vulnerable to backdoor attacks and may even be more vulnerable to such attacks than GNNs without data augmentation.

  • CoVR+: Design of Visual Effects for Promoting Joint Attention During Shared VR Experiences via a Projection of HMD User's View

    Akiyoshi SHINDO  Shogo FUKUSHIMA  Ari HAUTASAARI  Takeshi NAEMURA  

     
    PAPER

      Pubricized:
    2023/12/14
      Vol:
    E107-D No:3
      Page(s):
    374-382

    A user wearing a Head-Mounted Display (HMD) is likely to feel isolated when sharing virtual reality (VR) experiences with Non-HMD users in the same physical space due to not being able to see the real space outside the virtual world. This research proposes a method for an HMD user to recognize the Non-HMD users' gaze and attention via a projector attached to the HMD. In the proposed approach, the projected HMD user's view is filtered darker than default, and when Non-HMD users point controllers towards the projected view, the filter is removed from a circular area for both HMD and Non-HMD users indicating which region the Non-HMD users are viewing. We conducted two user studies showing that the Non-HMD users' gaze can be recognized with the proposed method, and investigated the preferred range for the alpha value and the size of the area for removing the filter for the HMD user.

  • Hierarchical Latent Alignment for Non-Autoregressive Generation under High Compression Ratio

    Wang XU  Yongliang MA  Kehai CHEN  Ming ZHOU  Muyun YANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/12/01
      Vol:
    E107-D No:3
      Page(s):
    411-419

    Non-autoregressive generation has attracted more and more attention due to its fast decoding speed. Latent alignment objectives, such as CTC, are designed to capture the monotonic alignments between the predicted and output tokens, which have been used for machine translation and sentence summarization. However, our preliminary experiments revealed that CTC performs poorly on document abstractive summarization, where a high compression ratio between the input and output is involved. To address this issue, we conduct a theoretical analysis and propose Hierarchical Latent Alignment (HLA). The basic idea is a two-step alignment process: we first align the sentences in the input and output, and subsequently derive token-level alignment using CTC based on aligned sentences. We evaluate the effectiveness of our proposed approach on two widely used datasets XSUM and CNNDM. The results indicate that our proposed method exhibits remarkable scalability even when dealing with high compression ratios.

  • Generic Construction of Public-Key Authenticated Encryption with Keyword Search Revisited

    Keita EMURA  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-A No:3
      Page(s):
    260-274

    Public key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender's secret key is required for encryption, and a trapdoor is associated with not only a keyword but also the sender. This setting allows us to prevent information leakage of keyword from trapdoors. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper, we propose a new generic construction of PAEKS, which is more efficient than Liu et al.'s in the sense that we only use one SPHF, but Liu et al. used two SPHFs. In addition, for consistency we considered a security model that is stronger than Liu et al.'s. Briefly, Liu et al. considered only keywords even though a trapdoor is associated with not only a keyword but also a sender. Thus, a trapdoor associated with a sender should not work against ciphertexts generated by the secret key of another sender, even if the same keyword is associated. That is, in the previous definitions, there is room for a ciphertext to be searchable even though the sender was not specified when the trapdoor is generated, that violates the authenticity of PAKES. Our consistency definition considers a multi-sender setting and captures this case. In addition, for indistinguishability against chosen keyword attack (IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight several issues associated with the Liu et al. construction in terms of hash functions, e.g., their construction does not satisfy the consistency that they claimed to hold.

  • Ensemble Malware Classifier Considering PE Section Information

    Ren TAKEUCHI  Rikima MITSUHASHI  Masakatsu NISHIGAKI  Tetsushi OHKI  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:3
      Page(s):
    306-318

    The war between cyber attackers and security analysts is gradually intensifying. Owing to the ease of obtaining and creating support tools, recent malware continues to diversify into variants and new species. This increases the burden on security analysts and hinders quick analysis. Identifying malware families is crucial for efficiently analyzing diversified malware; thus, numerous low-cost, general-purpose, deep-learning-based classification techniques have been proposed in recent years. Among these methods, malware images that represent binary features as images are often used. However, no models or architectures specific to malware classification have been proposed in previous studies. Herein, we conduct a detailed analysis of the behavior and structure of malware and focus on PE sections that capture the unique characteristics of malware. First, we validate the features of each PE section that can distinguish malware families. Then, we identify PE sections that contain adequate features to classify families. Further, we propose an ensemble learning-based classification method that combines features of highly discriminative PE sections to improve classification accuracy. The validation of two datasets confirms that the proposed method improves accuracy over the baseline, thereby emphasizing its importance.

  • Equivalences among Some Information Measures for Individual Sequences and Their Applications for Fixed-Length Coding Problems

    Tomohiko UYEMATSU  Tetsunao MATSUTA  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:3
      Page(s):
    393-403

    This paper proposes three new information measures for individual sequences and clarifies their properties. Our new information measures are called as the non-overlapping max-entropy, the overlapping smooth max-entropy, and the non-overlapping smooth max-entropy, respectively. These measures are related to the fixed-length coding of individual sequences. We investigate these measures, and show the following three properties: (1) The non-overlapping max-entropy coincides with the topological entropy. (2) The overlapping smooth max-entropy and the non-overlapping smooth max-entropy coincide with the Ziv-entropy. (3) When an individual sequence is drawn from an ergodic source, the overlapping smooth max-entropy and the non-overlapping smooth max-entropy coincide with the entropy rate of the source. Further, we apply these information measures to the fixed-length coding of individual sequences, and propose some new universal coding schemes which are asymptotically optimum.

  • Communication-Efficient Distributed Orthogonal Approximate Message Passing for Sparse Signal Recovery

    Ken HISANAGA  Motohiko ISAKA  

     
    PAPER-Signal Processing

      Pubricized:
    2023/08/30
      Vol:
    E107-A No:3
      Page(s):
    493-502

    In this paper, we introduce a framework of distributed orthogonal approximate message passing for recovering sparse vector based on sensing by multiple nodes. The iterative recovery process consists of local computation at each node, and global computation performed either by a particular node or joint computation on the overall network by exchanging messages. We then propose a method to reduce the communication cost between the nodes while maintaining the recovery performance.

  • BRsyn-Caps: Chinese Text Classification Using Capsule Network Based on Bert and Dependency Syntax

    Jie LUO  Chengwan HE  Hongwei LUO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/11/06
      Vol:
    E107-D No:2
      Page(s):
    212-219

    Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.

  • Negative Learning to Prevent Undesirable Misclassification

    Kazuki EGASHIRA  Atsuyuki MIYAI  Qing YU  Go IRIE  Kiyoharu AIZAWA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/10/05
      Vol:
    E107-D No:1
      Page(s):
    144-147

    We propose a novel classification problem setting where Undesirable Classes (UCs) are defined for each class. UC is the class you specifically want to avoid misclassifying. To address this setting, we propose a framework to reduce the probabilities for UCs while increasing the probability for a correct class.

  • Research on Lightweight Acoustic Scene Perception Method Based on Drunkard Methodology

    Wenkai LIU  Lin ZHANG  Menglong WU  Xichang CAI  Hongxia DONG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:1
      Page(s):
    83-92

    The goal of Acoustic Scene Classification (ASC) is to simulate human analysis of the surrounding environment and make accurate decisions promptly. Extracting useful information from audio signals in real-world scenarios is challenging and can lead to suboptimal performance in acoustic scene classification, especially in environments with relatively homogeneous backgrounds. To address this problem, we model the sobering-up process of “drunkards” in real-life and the guiding behavior of normal people, and construct a high-precision lightweight model implementation methodology called the “drunkard methodology”. The core idea includes three parts: (1) designing a special feature transformation module based on the different mechanisms of information perception between drunkards and ordinary people, to simulate the process of gradually sobering up and the changes in feature perception ability; (2) studying a lightweight “drunken” model that matches the normal model's perception processing process. The model uses a multi-scale class residual block structure and can obtain finer feature representations by fusing information extracted at different scales; (3) introducing a guiding and fusion module of the conventional model to the “drunken” model to speed up the sobering-up process and achieve iterative optimization and accuracy improvement. Evaluation results on the official dataset of DCASE2022 Task1 demonstrate that our baseline system achieves 40.4% accuracy and 2.284 loss under the condition of 442.67K parameters and 19.40M MAC (multiply-accumulate operations). After adopting the “drunkard” mechanism, the accuracy is improved to 45.2%, and the loss is reduced by 0.634 under the condition of 551.89K parameters and 23.6M MAC.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Resource Allocation for Mobile Edge Computing System Considering User Mobility with Deep Reinforcement Learning

    Kairi TOKUDA  Takehiro SATO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    173-184

    Mobile edge computing (MEC) is a key technology for providing services that require low latency by migrating cloud functions to the network edge. The potential low quality of the wireless channel should be noted when mobile users with limited computing resources offload tasks to an MEC server. To improve the transmission reliability, it is necessary to perform resource allocation in an MEC server, taking into account the current channel quality and the resource contention. There are several works that take a deep reinforcement learning (DRL) approach to address such resource allocation. However, these approaches consider a fixed number of users offloading their tasks, and do not assume a situation where the number of users varies due to user mobility. This paper proposes Deep reinforcement learning model for MEC Resource Allocation with Dummy (DMRA-D), an online learning model that addresses the resource allocation in an MEC server under the situation where the number of users varies. By adopting dummy state/action, DMRA-D keeps the state/action representation. Therefore, DMRA-D can continue to learn one model regardless of variation in the number of users during the operation. Numerical results show that DMRA-D improves the success rate of task submission while continuing learning under the situation where the number of users varies.

81-100hit(6977hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.