Jiang YU Youyun XU Jinlong WANG
In this letter, we study cooperative transmission in wireless multicast networks. An opportunistic cooperative multicast scheme based on coded cooperation (OCM-CC) is proposed and its closed-form expression of outage performance is obtained. Through numeric evaluation, we analyze its outage probability with different numbers of relays and different cooperative ratios.
Lei SONG Lihua LI Xiangchuan GAO Hualei WANG Yuan LUO
This letter reveals that whole link reciprocity does not exist in general amplify-and-forward (AF) time division duplex (TDD) relay systems due to the gain matrix. To resolve this problem, a novel gain matrix design method is proposed. Any existing gain matrix design criterion can be adopted in the downlink (uplink) to ensure optimal performance, and the proposed scheme is used in the uplink (downlink), with small adjustment, to keep whole link reciprocity. Simulation results show that, the proposed method can maintain whole link reciprocity without performance loss.
Wooju LEE Dongweon YOON Zhengyuan XU
In this paper, we consider multiple source and destination antennas based on relay selection scheme to improve the end-to-end outage performance for decode-and-forward cooperative networks. We derive an exact closed-form expression of the outage probability for the proposed system over a Rayleigh fading channel and describe the diversity-multiplexing tradeoff of the system. We then analyze the effects of the number of source and destination antennas on the outage probabilities and diversity-multiplexing tradeoffs.
Hironori UCHIKAWA Kenta KASAI Kohichi SAKANIWA
We consider spatially-coupled protograph-based LDPC codes for the three terminal erasure relay channel. It is observed that BP threshold value, the maximal erasure probability of the channel for which decoding error probability converges to zero, of spatially-coupled codes, in particular spatially-coupled MacKay-Neal code, is close to the theoretical limit for the relay channel. Empirical results suggest that spatially-coupled protograph-based LDPC codes have great potential to achieve theoretical limit of a general relay channel.
Ardalan ALIZADEH Seyed Mohammad-Sajad SADOUGH
In this paper, we present a cognitive relay network with two primary transceivers that communicate via several distributed relay terminals. Spectrum sensing is deployed at the relays to sense the absence/presence of the primary transceivers based on energy detection. The primary network utilizes a two-step two-way amplify-and-forward (AF) scheme by using the cognitive radio (CR) terminals as its relay nodes when the primary network is not in operation, in contrast, the CRs communicate with their own base station (BS). In the first relaying step, the primary transceivers send their signal to the CRs/relays. Distributed beamforming is then performed in the second relaying step. Our aim is to set the beamforming weights so as to minimize the total power dissipated in the relay network while satisfying a target signal-to-noise ratio (SNR) at the primary transceivers and at the cognitive BS. This is achieved by solving an optimization problem that we formulate as a nonconvex quadratically constrained quadratic program (QCQP). This problem is solved efficiently by semidefinite relaxation (SDR) and Lagrangian duality. Simulation results are provided to demonstrate the superiority of our proposed technique, compared to classical beamforming techniques, in terms of power reduction.
Se-Jin KIM Seung-Yeon KIM Ryong OH Seungwan RYU Hyong-Woo LEE Choong-Ho CHO
In this paper, we evaluate the downlink performance of Transparent mode (T-mode) and Non-Transparent mode (NT-mode) in a two-hop cellular system based on IEEE 802.16j. In particular, we evaluate the performance in terms of the system capacity, optimal resource allocation, and outage probability using Monte Carlo simulation with various system parameters such as different Frequency Reuse Factors (FRFs) and the distance between Base Station (BS) and Relay Station (RS). To analyze the Signal to Interference and Noise Ratio (SINR) of the access and relay links, an SINR model is introduced for cellular multihop systems considering intra- and inter-cell interferences. Then, we present a method of optimal resource allocation for the Access Zone (AZ) and Relay Zone (RZ) to maximize the system capacity. Consequently, the simulation results provide an insight into choosing the appropriate RS position and optimal resource allocation. Through numerical examples, it is found that the FRFs of two and three are good choices to achieve the highest capacity with low outage in T- and NT-modes, respectively.
Sung Kwon HONG Jong-Moon CHUNG
In this letter, two new network coding (NC) diversity enhancement schemes are introduced for wireless relay systems. Conventional diversity enhancement approaches for relay systems suffer from error propagation at each relay and exhibit second order diversity performance. In the proposed schemes, when a relay experiences a decoding failure, the relay makes a request to have the source transmit the NC frames to the destination in its time slot. Due to this operation, the proposed schemes prevent error propagation and achieve near third order diversity performance. The proposed schemes are compared to conventional schemes based on the derived mathematical error bounds and simulation performance, both of which demonstrate the superiority of the proposed schemes.
Xianglan JIN Dong-Sup JIN Jong-Seon NO Dong-Joon SHIN
The probability of making mistakes on the decoded signals at the relay has been used for the maximum-likelihood (ML) decision at the receiver in the decode-and-forward (DF) relay network. It is well known that deriving the probability is relatively easy for the uncoded single-antenna transmission with M-pulse amplitude modulation (PAM). However, in the multiplexing multiple-input multiple-output (MIMO) transmission, the multi-dimensional decision region is getting too complicated to derive the probability. In this paper, a high-performance near-ML decoder is devised by applying a well-known pairwise error probability (PEP) of two paired-signals at the relay in the MIMO DF relay network. It also proves that the near-ML decoder can achieve the maximum diversity of MSMD+MR min (MS,MD), where MS, MR, and MD are the number of antennas at the source, relay, and destination, respectively. The simulation results show that 1) the near-ML decoder achieves the diversity we derived and 2) the bit error probability of the near-ML decoder is almost the same as that of the ML decoder.
In this letter, we analyze the amplify-and-forward (AF) two-way cooperative relaying scheme with regard to the average data transmission rate and the symbol error probability. By investigating the Moment-Generating function (MGF) and the k-th moment of “extra-harmonic” mean of two variables, we derive an exact closed-form expression for the symbol error probability (SEP) and the approximate average sum rate. Analysis results show that the proposed scheme achieves higher SEP performance as well as a lower data rate than the conventional AF two-way scheme. Additionally, it also matches the SEP performance of the one-way AF cooperative scheme but attains higher sum rate. Finally, Monte Carlo simulation results will be shown to confirm our analytical results.
Xuerong YE Jie DENG Qiong YU Guofu ZHAI
Generally, the failure rate of a sealed relay is regarded as a constant value, no matter where and how it is used. However, the failure processes of sealed relays won't be the same under different conditions, even for one relay, its failure rate also will be changed during operations. This paper studies the failure process of a kind of sealed relay by analyzing the variations of its time parameters. Among contact resistance and all those time parameters, it is found that closing gap time can indicate the failure process of tested relay very well. For the purpose of verifying this conclusion derived from time parameters, the contacts are observed by microscope after the tested relay failed. Both theoretical calculation result of contacts gap and photos taken by microscope show that the hypothetic failure mode derived from time parameters is reasonable. Based on the failure analysis, the paper also proposes a dynamic reliability estimation method with closing gap time.
Laijun ZHAO Zhenbiao LI Hansi ZHANG Makoto HASEGAWA
To clarify how the occurrence of contact welding is related to the series of arc duration characteristics in consecutive make and break operations, electrical endurance tests were conducted on commercially available automotive relays, and the voltage waveforms of make and break arcs between the electrodes were recorded with LabVIEW. Experimental results indicate that welding may occur suddenly or randomly with increasing number of operations. A single arc or a group of make or break arcs with a long arc duration does not necessarily result in contact welding, but a group of longer make or break arcs within a narrow range of operation numbers can cause imminent contact welding (such an effect can be called the “group of longer arcing duration effect”). It is confirmed that contact welding may occur in both make and break operations, but the welding probability during make operations is much higher than that during break operations.
Hyung-Weon CHO Jong-Moon CHUNG Myunghwan SEO Jongho PARK Jihyoung AHN Bumkwi CHOI Tae-Jin LEE
In OLSR, only selected multipoint relays (MPRs) are allowed to forward broadcast data during the flooding process, which reduces the message propagation overhead compared to the classical flooding mechanism. Since every node in a network selects its own MPRs independently, many nodes may be MPRs of other nodes, which results in many collisions in the medium access control (MAC) layer under heavy traffic conditions. In this paper, we propose an MPR candidate selection mechanism for broadcast data aggregation in mobile ad-hoc networks. The proposed MPR candidate selection scheme can reduce the number of MPR candidates and appropriately spread MPR candidates over the whole network area. The performance of the proposed MPR candidate selection mechanism is investigated via mathematical analysis and simulations. We also propose a broadcast data aggregation mechanism to achive efficient resource utilization. Performance evaluation indicates that the proposed MPR candidate selection and broadcast data aggregation mechanism is efficient under heavy broadcast traffic load conditions.
Yongchul KIM Mihail L. SICHITIU
WiMAX (IEEE 802.16) has emerged as a promising radio access technology for providing high speed broadband connectivity to subscribers over large geographic regions. New enhancements allow deployments of relay stations (RSs) that can extend the coverage of the base station (BS), increase cell capacity, or both. In this paper, we consider the placement of transparent RSs that maximize the cell capacity. We provide a closed-form approximation for the optimal location of RS inside a cell. A numerical analysis of a number of case studies validates the closed-form approximation. The numerical results show that the closed-form approximation is reasonably accurate.
Naoya TAKESHITA Junya SEKIKAWA Takayoshi KUBONO
Break arcs are rotated with the radial magnetic field formed by a magnet embedded in the fixed contact. They are generated in a DC42 V resistive circuit. The circuit current when the contacts are closed varies from 5 A to 21 A. The strength of a radial magnetic field for rotating break arcs changes. Arc duration is investigated. Then rotational frequency, arc length and Lorentz force when the periodic rotation of break arcs starts are analyzed to investigate the conditions required to rotate break arcs. The following results are obtained. The arc length L when the rotational motion of the break arc starts is almost constant at a constant magnetic flux density with an increase in circuit current. The arc length L decreases with an increase in the magnetic flux density of the radial magnetic field. The rotational motion of break arcs starts when the arc length L reaches a certain value determined by magnetic flux density. Rotational frequency and Lorentz force increase linearly with an increase in circuit current.
Asem A. SALAH Raja Syamsul Azmir Raja ABDULLAH Borhanuddin Bin MOHD. ALI Nidhal A. ODEH
This paper proposes a new resource allocation algorithm for uplink OFDMA-based cooperative relay networks, assuming multiple user nodes, multiple relay nodes and a single destination. The aim is to maximise the total sum of the users' data rates, while guaranteeing fairness among them with different QoS requirements. Assuming perfect channel state information (CSI) at the resource allocation controller, the optimisation problem is formulated such that each user is assigned a weight factor based on its QoS requirements. The ones with higher weights are given higher priorities to select their resources (relay stations and subcarriers) first. Once the required QoS is achieved for all users, the weight factor for all users is reduced to a small uniform value. The remaining resources are then allocated to the users with higher instantaneous rates in order of magnitude. The results show that the proposed algorithm outperforms the greedy and static algorithms in terms of outage probability and fairness, and at the same time outperforms Jeong's algorithm by 58% in terms of total sum rate, with an average 74% reduction in system complexity.
Xuefang LIU Qinghai YANG Fenglin FU
In this letter, we investigate the Nth-best user selection scheme for amplify-and-forward cooperative systems over Rayleigh fading channels. We deduce the probability density function, the cumulative density function, and the moment generating function of the end-to-end signal-to-noise ratio of the system. Then, the respective closed-form expressions of the average symbol error probability and the outage probability at the destination are derived. The diversity order obtained in the scheme increases with user number but becomes less as the selection sequence number N increases. Simulation results verify the analytical results.
We study a joint optimal design of the receive equalizer and relaying architecture in terms of the weighted sum of mean square errors for the multi-user multiple-input multiple-output (MIMO) relaying system. We show that the optimal relaying architecture depends on the weight factors and that conventional diagonal relaying is a special case of the proposed relaying architecture. Interestingly, for unequal weights, it turns out that the optimal relaying is different from the existing diagonal relaying schemes. By simulation, we show that the proposed joint design improves the weighted sum of mean square error (MSE) over the existing MIMO relaying schemes.
Kostas PEPPAS Christos DATSIKAS
In this letter, a study on the end-to-end outage performance of dual-hop non-regenerative relaying in the presence of co-channel interference is presented. We assume that both the desired and the interfering signals are subjected to Nakagami-m fading. Exact analytical expressions, as well as tight lower bounds of the end-to-end outage probability, are derived. An asymptotic expression for the outage probability at high values of Signal-to-Interference Ratio is also presented. Furthermore, we also propose the optimal power allocation for high values of Signal-to-Interference Ratio. Extensive numerically evaluation and computer simulation results are presented to verify the validity and the accuracy of the proposed analysis.
In this letter, we derive another exact bit error rate (BER) for decode-and-forward (DF) relay systems over Rayleigh fading channels. At first, our focus is on fixed-DF (FDF) relay schemes in which the probability density function (PDF) is derived based on error-events at relay nodes. Some insight into how erroneous detection and transmission at relay nodes affect both the combined signal-to-noise ratio (SNR) and the averaged BER is obtained, and cooperative diversity is observed from the closed-form BER expression. In addition, the developed analytical method is extended to adaptive-DF (ADF) schemes and the exact BER expressions are derived. Simulation results are finally presented to validate the analysis.
In this paper, we propose precoding and power allocation strategies for full-duplex multiple input multiple output (MIMO) relays. The precoding scheme for full-duplex MIMO relays is derived based on the block diagonalization (BD) method to suppress the self-interference in the full-duplex relaying so that each relay station (RS) can receive multiple data streams from the base station (BS), while forwarding the decoded data streams to mobile stations (MS's) simultaneously. We also develop the optimal power allocation scheme for full-duplex MIMO relays. Numerical results verify that the proposed scheme provides substantial performance improvement compared with the conventional half-duplex relay (HDR), if sufficient physical isolation between the transmit and receive antennas is ensured such that the proposed full-duplex MIMO relays operate in a tolerable self-interference range.