Keyword Search Result

[Keyword] TDA(12hit)

1-12hit
  • On the Outage Performance of Decode-and-Forward Opportunistic Mobile Relaying with Direct Link

    Hui TIAN  Kui XU  Youyun XU  Xiaochen XIA  

     
    PAPER-Network

      Vol:
    E99-B No:3
      Page(s):
    654-665

    In this paper, we investigate the effect of outdated channel state information (CSI) on decode-and-forward opportunistic mobile relaying networks with direct link (DL) between source node and destination node. Relay selection schemes with different levels of CSI are considered: 1) only outdated CSI is available during the relay selection procedure; 2) not only outdated CSI but also second-order statistics information are available in relay selection process. Three relay selection schemes are proposed based on the two levels of outdated CSI. Closed-form expressions of the outage probability are derived for the proposed relay selection schemes. Meanwhile, the asymptotic behavior and the achievable diversity of three relay selection schemes are analyzed. Finally, simulation results are presented to verify our analytical results.

  • Outage Probability of N-th Best User Selection in Multiuser Two-Way Relay Networks over Nakagami-m Fading

    Jie YANG  Yingying YUAN  Nan YANG  Kai YANG  Xiaofei ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1987-1993

    We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.

  • Prediction-Based Cross-Layer Resource Allocation for Wireless Multi-Hop Networks with Outdated CSI

    Wei FENG  Suili FENG  Yuehua DING  Yongzhong ZHANG  

     
    PAPER-Network

      Vol:
    E97-B No:4
      Page(s):
    746-754

    The rapid variation of wireless channels and feedback delay make the available channel state information (CSI) outdated in dynamic wireless multi-hop networks, which significantly degrades the accuracy of cross-layer resource allocation. To deal with this problem, a cross-layer resource allocation scheme is proposed for wireless multi-hop networks by taking the outdated CSI into account and basing compensation on the results of channel prediction. The cross-layer resource allocation is formulated as a network utility maximization problem, which jointly considers congestion control, channel allocation, power control, scheduling and routing with the compensated CSI. Based on a dual decomposition approach, the problem is solved in a distributed manner. Simulation results show that the proposed algorithm can reasonably allocate the resources, and significantly improve the throughput and energy efficiency in the network.

  • Decode-and-Forward Relaying Schemes with Best-Node Selection under Outdated Channel State Information: Error Probability Analysis and Comparison

    Nien-En WU  Hsuan-Jung SU  Hsueh-Jyh LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3142-3152

    Relay selection is a promising technique with which to achieve remarkable gains in multi-relay cooperative networks. Opportunistic relaying (OR) and selection cooperation (SC) are two major relay selection schemes for dual-hop decode-and-forward cooperative networks; they have been shown to be globally outage-optimal under an aggregate power constraint. However, due to channel fluctuations, the channel state information (CSI) used in the selection process may become outdated and differ from the CSI during the actual transmission of data. In this work, we study the effect of outdated CSI on OR and threshold-based SC (TSC) schemes under independent but not necessarily identically distributed Rayleigh fading channels. The source can possibly cooperate with the best relay for data transmission, with the destination performing maximal ratio combining of the signals from the source and the relay. In particular, we analyze the average symbol error probability (ASEP) of OR and TSC with outdated CSI by deriving approximate but tight closed-form expressions for the moment generating function of the end-to-end signal-to-noise ratio. We also investigate the asymptotic behavior of the ASEP. The results show that the diversity orders of OR and TSC reduce to one and two, respectively, due to the outdated CSI. However, TSC achieves full spatial diversity order when the relay-to-destination CSI is perfect. Finally, to verify the analytical results Monte Carlo simulations are performed, in which OR attains better ASEP than TSC in a perfect CSI scenario, while TSC is less susceptible to outdated CSI.

  • Outage Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity and Outdated CSI under Asymmetric Fading

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:3
      Page(s):
    732-736

    Spectrum sharing cognitive radio (CR) with maximal ratio combining (MRC) diversity under asymmetric fading is studied. Specifically, the channel on the secondary transmitter (STx) to the secondary receiver (SRx) link is Nakagami-m distributed while the channel on the STx to the primary receiver (PRx) link is Rayleigh distributed, and the channel state information (CSI) on the STx-PRx link is assumed to be outdated due to feedback delay. The outage capacity of the secondary user (SU) is derived under the average interference and peak transmit power constraints. The results supported by simulations are presented and show the effects of various system parameters on the outage capacity. Particularly, it is shown that the outdated CSI has no impact on the outage capacities in the cases of low peak transmit power constraint and zero-outage probability. It is also shown that MRC diversity can significantly improve the outage capacity especially for the zero-outage capacity and the outage capacity under low outage probability.

  • 1.0 ps Resolution Time-to-Digital Converter Based-On Cascaded Time-Difference-Amplifier Utilizing Differential Logic Delay Cells

    Shingo MANDAI  Tetsuya IIZUKA  Toru NAKURA  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:6
      Page(s):
    1098-1104

    This paper proposes a time-to-digital converter (TDC) utilizing the cascaded time difference amplifier (TDA) and shows measurement results with 0.18 µm CMOS. The proposed TDC operates in two modes, a wide input range mode and a fine time resolution mode. We employ a non-linearity calibration technique based on a lookup table. The wide input range mode shows 10.2 ps time resolution over 1.3 ns input range with DNL and INL of +0.8/-0.7LSB and +0.8/-0.4LSB, respectively. The fine time resolution mode shows 1.0 ps time resolution over 60 ps input range with DNL and INL of +0.9/-0.9LSB and +0.8/-1.0LSB, respectively.

  • Cascaded Time Difference Amplifier with Differential Logic Delay Cell

    Shingo MANDAI  Toru NAKURA  Tetsuya IIZUKA  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:4
      Page(s):
    654-662

    We introduce a 16 × cascaded time difference amplifier (TDA) using a differential logic delay cell with 0.18 µm CMOS process. By employing the differential logic delay cell in the delay chain instead of the CMOS logic delay cell, less than 8% TD gain offset with 150 ps input range is achieved. The input referred standard deviation of the output time difference error is 2.7 ps and the input referred is improved by 17% compared with that of the previous TDA using the CMOS logic delay cell.

  • Outage Performance of Opportunistic Decode-and-Forward Cooperation with Imperfect Channel State Information

    Changqing YANG  Wenbo WANG  Shuping CHEN  Mugen PENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3083-3092

    In this paper, the outage probability and diversity order of opportunistic decode-and-forward (DF) cooperation are analyzed under Rayleigh fading channels, where the impacts of channel estimation error, relay selection feedback delay and the availability of the direct link between the source and the destination are considered comprehensively. The closed-form expressions of outage probability in the high signal-to-noise ratio (SNR) region are derived as well as the diversity order. The theoretical results demonstrate that the achievable diversity order is zero when channel estimation error exists, and this conclusion holds no matter whether the direct link is available, even if the relay selection feedback is delay-free. For the perfect channel estimation scenario, the achievable diversity order is related to the potential relay number K, the channel delay correlation coefficient ρd and the availability of the direct link. If relay selection feedback is not delayed, i.e., ρd = 1, the diversity order is K when the direct link is blocked, and it becomes K+1 when the direct link is available. For delayed relay selection feedback, i.e., ρd < 1, the diversity order achievable is only related to the availability of the direct link. In this case, if the direct link does not exist, the diversity order is 1, otherwise the diversity order of 2 can be obtained. Simulation results verify the analytical results of outage probability and diversity order.

  • Time Difference Amplifier with Robust Gain Using Closed-Loop Control

    Toru NAKURA  Shingo MANDAI  Makoto IKEDA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E93-C No:3
      Page(s):
    303-308

    This paper presents a Time Difference Amplifier (TDA) that amplifies the input time difference into the output time difference. Cross coupled chains of variable delay cells with the same number of stages are applicable for TDA, and the gain is adjusted via the closed-loop control. The TDA was fabricated using 65 nm CMOS and the measurement results show that the time difference gain is 4.78 at a nominal power supply while the designed gain is 4.0. The gain is stable enough to be less than 1.4% gain shift under 10% power supply voltage fluctuation.

  • MIMO Broadcast Transmission Strategy over Fast Time-Varying Channels

    Hongmei WANG  Xibin XU  Ming ZHAO  Weiling WU  Yan YAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:8
      Page(s):
    2731-2735

    In time-varying channels, the channel state information available at the transmitter (CSIT) is outdated due to inherent time delay between the uplink channel estimation and the downlink data transmission in TDD systems. In this letter, we propose an iterative precoding method and a linear decoding method which are both based on minimum mean-squared error (MMSE) criteria to mitigate the interference among data streams and users created by outdated CSIT for multiuser MIMO downlink systems. Analysis and simulation results show that the proposed method can effectively reduce the impairment of the outdated CSIT and improve the system capacity.

  • Fabrication and Characteristics of Low-Molecular Phosphorescent Organic Light-Emitting Diodes Employed by Wet-Process

    Yuichi HINO  Hirotake KAJII  Yutaka OHMORI  

     
    PAPER-Characterization and Abilities of Organic Electronic Devices

      Vol:
    E87-C No:12
      Page(s):
    2053-2058

    We have demonstrated improvement in the efficiency of TDAPB-based OLEDs. The external quantum efficiency of 8.2% and a power efficiency of 17.3 lm/W were achieved. The results suggest that using the starburst small-molecule TDAPB allows for easy fabrication and is effective for achieving high efficiencies in simple device structures.

  • Electrical Characterization of Hole Transport Materials Using In-situ Field Effect Measurement

    Masaaki IIZUKA  Masakazu NAKAMURA  Kazuhiro KUDO  Kuniaki TANAKA  

     
    PAPER-Fabrication and Characterization of Thin Films

      Vol:
    E85-C No:6
      Page(s):
    1311-1316

    We investigated the electrical properties of hole transport materials such as TPD, α-NPD and m-MTDATA using in-situ field effect measurement. TPD, α-NPD and m-MTDATA films showed p-type semiconducting properties, and their electrical parameters such as conductivity, carrier mobility and carrier concentration were obtained. We also examined the effect of the substrate temperature during vacuum deposition and the thermal treatment after deposition, on the electrical parameters of the films. Experimental results showed that conductivity and carrier mobility decreased as the substrate temperature increased over the glass transition temperature. These decreases in conductivity and carrier mobility as a result of thermal treatment appear to be strongly related to the degradation mechanism of organic electroluminescent devices.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.