1-12hit |
Akihiro KADOHATA Atsushi WATANABE Akira HIRANO Hiroshi HASEGAWA Ken-ichi SATO
We propose a new extension to reconfiguration algorithms used to address wavelength defragmentation to enhance the path accommodation efficiency in optical transparent wavelength division multiplexing networks. The proposed algorithm suppresses the number of fibers employed to search for a reconfigurable wavelength channel by combining routes between the target path and the existing path in a reconfigured wavelength channel. This paper targets three main phases in reconfiguration: i) the reconfiguration trigger; ii) redesign of the wavelength path; and iii) migrating the wavelength paths. The proposed and conventional algorithms are analyzed from the viewpoints of the number of fibers, accommodation rate and the number of migrating sequences. Numerical evaluations show that the number of fibers is suppressed by 9%, and that the accommodation efficiency is increased by approximately 5%-8% compared to when reconfiguration is not performed.
Wissarut YUTTACHAI Poompat SAENGUDOMLERT Wuttipong KUMWILAISAK
We consider the problem of detecting and localizing of link quality degradations in transparent wavelength division multiplexing (WDM) networks. In particular, we consider the degradation of the optical signal-to-noise ratio (OSNR), which is a key parameter for link quality monitoring in WDM networks. With transparency in WDM networks, transmission lightpaths can bypass electronic processing at intermediate nodes. Accordingly, links cannot always be monitored by receivers at their end nodes. This paper proposes the use of optical multicast probes to monitor OSNR degradations on optical links. The proposed monitoring scheme consists of two steps. The first step is an off-line process to set up monitoring trees using integer linear programming (ILP). The set of monitoring trees is selected to guarantee that significant OSNR degradations can be identified on any link or links in the network. The second step uses optical performance monitors that are placed at the receivers identified in the first step. The information from these monitors is collected and input to the estimation algorithm to localize the degraded links. Numerical results indicate that the proposed monitoring algorithm is able to detect link degradations that cause significant OSNR changes. In addition, we demonstrate how the information obtained from monitoring can be used to detect a significant end-to-end OSNR degradation even though there is no significant OSNR degradation on individual links.
Yusuke HIROTA Hiroaki HONDA Hideki TODE Koso MURAKAMI
In next-generation networks, ultra-high speed transfer capability will become necessary to support a variety of advanced multimedia services. The Optical Wavelength Division Multiplexing (WDM) network is seen as one of promising networks. To deal with various multimedia services, the network should support not only unicast transmission but also multicast transmission. However, IP multicast has several problems, for example, all routers must have multicast functions. IP multicast needs routers with high overheads and excessive energy consumption. Hence, optical multicasting in optical WDM networks is a promising solution for future internet services. A tree-shared multicasting concept has been proposed to support multicast transmissions in optical WDM networks. This method assembles multiple multicast traffic streams into one burst and the burst is delivered using a shared-tree. However, this method can not be applied to dynamic multicasting. This paper proposes a novel WDM multicast design method for dynamic traffic demand using multiple shared-trees, which includes shared-tree generation/selection and wavelength assignment, for the purpose of simplifying the routing process and receiving multicast traffic efficiently. We evaluate its performance from the viewpoints of the burst loss probability and the number of redundant and useless transfers whose data is discarded at the egress edge nodes.
Takuji TACHIBANA Hiroaki HARAI
In this paper, we propose an end-to-end lightpath establishment method in multi-domain WDM networks. In this method, each domain contracts the provision of wavelength-state information and the number of wavelengths provided to neighbor domains. According to the contract, each source node selects the probed wavelengths, which are the candidates for backward wavelength reservation. In order to select wavelengths that are likely to be idle through the multi-domain network, the source node collects wavelength-state information from each destination node and ranks wavelengths for each destination node for giving priority. The source node selects the wavelengths with higher ranks. We propose two rank accounting methods for this purpose. Through simulation experiments, we show that the proposed rank accounting methods with the above contract provide better performance in terms of blocking probability with conventional methods, especially when intra-domain traffic is low. We present the effective number of contract wavelengths. Further, we also extend these rank accounting methods to methods that aggressively collect wavelength-state information from other destination nodes. We show further improvement of performance by the extended rank accounting methods.
Son-Hong NGO Xiaohong JIANG Susumu HORIGUCHI
We propose an ant-based algorithm to improve the alternate routing scheme for dynamic Routing and Wavelength Assignment (RWA) in all-optical wavelength-division- multiplexing (WDM) networks. In our algorithm, we adopt a novel twin routing table structure that comprises both a P-route table for connection setup and a pheromone table for ants' foraging. The P-route table contains P alternate routes between a source-destination pair, which are dynamically updated by ant-based mobile agents based on current network congestion information. Extensive simulation results upon the ns-2 network simulator indicate that by keeping a suitable number of ants in a network to proactively and continually update the twin routing tables in the network, our new ant-based alternate routing algorithm can result in a small setup time and achieve a significantly lower blocking probability than the promising alternate shortest-path (ASP) algorithm and the fixed-paths least congestion (FPLC) algorithm for dynamic RWA even with a small value of P.
This paper studies the problem of light splitter placement (LSP) and wavelength converter placement (WCP) in all-optical WDM networks to enable optimal provisioning of static and dynamic traffic through efficient photonic multicast connections. To solve the LSP-WCP problem under static traffic provisioning, an Integer Linear Programming model is formulated to achieve the optimal solution in the sense that the total number of wavelength channels required by the multicast requests is minimized. To solve the LSP-WCP problem under dynamic traffic provisioning, a complementary-combined LSP-WCP heuristic is proposed to minimize the multicast traffic blocking probability, and is proved through extensive simulations.
Vinh Trong LE Xiaohong JIANG Son Hong NGO Susumu HORIGUCHI
Genetic Algorithms (GA) provide an attractive approach to solving the challenging problem of dynamic routing and wavelength assignment (RWA) in optical Wavelength Division Multiplexing (WDM) networks, because they usually achieve a significantly low blocking probability. Available GA-based dynamic RWA algorithms were designed mainly for WDM networks with a wavelength continuity constraint, and they cannot be applied directly to WDM networks with wavelength conversion capability. Furthermore, the available GA-based dynamic RWA algorithms suffer from the problem of requiring a very time consuming process to generate the first population of routes for a request, which may results in a significantly large delay in path setup. In this paper, we study the dynamic RWA problem in WDM networks with sparse wavelength conversion and propose a novel hybrid algorithm for it based on the combination of mobile agents technique and GA. By keeping a suitable number of mobile agents in the network to cooperatively explore the network states and continuously update the routing tables, the new hybrid algorithm can promptly determine the first population of routes for a new request based on the routing table of its source node, without requiring the time consuming process associated with current GA-based dynamic RWA algorithms. To achieve a good load balance in WDM networks with sparse wavelength conversion, we adopt in our hybrid algorithm a new reproduction scheme and a new fitness function that simultaneously takes into account the path length, number of free wavelengths, and wavelength conversion capability in route selection. Our new hybrid algorithm achieves a better load balance and results in a significantly lower blocking probability than does the Fixed-Alternate routing algorithm, both for optical networks with sparse and full-range wavelength converters and for optical networks with sparse and limited-range wavelength converters. This was verified by an extensive simulation study on the ns-2 network simulator and two typical network topologies. The ability to guarantee both a low blocking probability and a small setup delay makes the new hybrid dynamic RWA algorithm very attractive for current optical circuit switching networks and also for the next generation optical burst switching networks.
Jittima NITTAYAWAN Suwan RUNGGERATIGUL
Several regular topologies have been proposed to be used as the logical topology for WDM networks. These topologies are usually evaluated and compared based on the metrics related to network performance. It can be simply shown that this is generally not sufficient since better network performance can be achieved by increasing more network facilities. However, doing this eventually increases the network cost. Thus, the comparison of topologies must be performed by using an evaluation function that includes both the network performance metric and the network cost. In this paper, we propose a model to find the optimum regular logical topology for wavelength routed WDM networks. ShuffleNet, de Bruijn graph, hypercube, Manhattan Street Network, and GEMNet are the five well-known and commonly used regular topologies compared in this paper. By solving the two subproblems on node placement optimization, and routing and wavelength assignment, we obtain the evaluation function used in the topology comparison. Numerical results show that GEMNet is the optimum logical topology for the wavelength routed WDM networks, where it can take one of the three forms of ShuffleNet, de Bruijn graph, and its own configurations.
Xiao-Hua JIA Ding-Zhu DU Xiao-Dong HU He-Jiao HUANG De-Ying LI
Using less wavelengths to serve more communication channels is one of the primary goals in the design of WDM networks. By installing wavelength converters at some nodes in a network, the number of wavelengths needed can be reduced. It has been observed that the more converters installed in a network, the less number of wavelengths is needed, given the same network load. In this paper, we study the relationship between the number of converters and the number of wavelengths needed in a system, and propose a suite of theories and results on how to place the minimal number of converters in the system so that the number of wavelengths W is at most a constant α times the maximal link load L (i.e., W α L), where α = 3/2 or 5/3. The results show a significant saving of converters in networks of both special topologies and general topology.
Masumi SAITOH Mitsuru TAKENAKA Byongjin MA Yoshiaki NAKANO
We describe a simple all-optical wavelength converter based on a Fabry-Perot semiconductor optical amplifier (FPSOA). We measure its static characteristics in detail and successfully demonstrate its dynamic wavelength-conversion operation (both inverted and non-inverted) at 2.5 Gbit/s. This is the first demonstration of FPSOA-based wavelength conversion. Quasi-digital response is also observed. Low input power, ease of fabrication and good compatibility with WDM networks are important advantages of FPSOA.
Hong SHEN David J. EVANS Weifa LIANG Yuke WANG
This paper addresses the problem of multiple multicast in WDM networks. It presents three efficient algorithms to construct an optimal/sub-optimal multicast tree for each multicast and minimise the network congestion on wavelengths. The first two algorithm achieve an optimal network congestion for a specific class of networks whose all wavelengths are globally accessible and convertible at a unit cost. The third algorithm produces an approximation solution for the general case of WDM networks.
The Multiwavelength Optical Networking (MONET) program consists of a consortium of industrial partners, working together with the intent to demonstrate the key capabilities needed for configurable WDM networks. This involves integrating WDM technologies with optical switching technologies to provide a managed, high capacity, national scale WDM server layer to transport optical signals transparently across multiple interworking subnetworks.