Keyword Search Result

[Keyword] amplifier(597hit)

1-20hit(597hit)

  • GaN Solid State Power Amplifiers for Microwave Power Transfer and Microwave Heating Open Access

    Koji YAMANAKA  Kazuhiro IYOMASA  Takumi SUGITANI  Eigo KUWATA  Shintaro SHINJO  

     
    INVITED PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    292-298

    GaN solid state power amplifiers (SSPA) for wireless power transfer and microwave heating have been reviewed. For wireless power transfer, 9 W output power with 79% power added efficiency at 5.8 GHz has been achieved. For microwave heating, 450 W output power with 70% drain efficiency at 2.45 GHz has been achieved. Microwave power concentration and uniform microwave heating by phase control of multiple SSPAs are demonstrated.

  • Comprehensive Design Approach to Switch-Mode Resonant Power Amplifiers Exploiting Geodesic-to-Geodesic Impedance Conversion Open Access

    Minoru MIZUTANI  Takashi OHIRA  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    307-314

    This paper presents a comprehensive design approach to load-independent radio frequency (RF) power amplifiers. We project the zero-voltage-switching (ZVS) and zero-voltage-derivative-switching (ZVDS) load impedances onto a Smith chart, and find that their loci exhibit geodesic arcs. We exploit a two-port reactive network to convert the geodesic locus into another geodesic. This is named geodesic-to-geodesic (G2G) impedance conversion, and the power amplifier that employs G2G conversion is called class-G2G amplifier. We comprehensively explore the possible circuit topologies, and find that there are twenty G2G networks to create class-G2G amplifiers. We also find out that the class-G2G amplifier behaves like a transformer or a gyrator converting from dc to RF. The G2G design theory is verified via a circuit simulation. We also verified the theory through an experiment employing a prototype 100 W amplifier at 6.78 MHz. We conclude that the presented design approach is quite comprehensive and useful for the future development of high-efficiency RF power amplifiers.

  • Multibeam Digital Predistorter with Intercarrier Interference Suppression for Millimeter-Wave Array Antenna Transmitters

    Tomoya OTA  Alexander N. LOZHKIN  Ken TAMANOI  Hiroyoshi ISHIKAWA  Takurou NISHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/03
      Vol:
    E106-B No:12
      Page(s):
    1470-1478

    This paper proposes a multibeam digital predistorter (DPD) that suppresses intercarrier interference caused by nonlinear distortions of power amplifiers (PAs) while reducing the power consumption of a multibeam array antenna transmitter. The proposed DPD reduces power consumption by allowing the final PAs of the array antenna transmitter to operate in a highly efficient nonlinear mode and compensating for the nonlinear distortions of the PAs with a unified dedicated DPD per subarray. Additionally, it provides the required high-quality signal transmission for high throughputs, such as realizing a 256-quadrature amplitude modulation (QAM) transmission instead of a 64-QAM transmission. Specifically, it adds an inverse-component signal to cancel the interference from an adjacent carrier of another beam. Consequently, it can suppress the intercarrier interference in the beam direction and improve the error vector magnitude (EVM) during the multibeam transmission, in which the frequency bands of the beams are adjacent. The experimental results obtained for two beams at 28.0 and 28.4GHz demonstrate that, compared with the previous single-beam DPD, the proposed multibeam DPD can improve the EVM. Also, they demonstrate that the proposed DPD can achieve an EVM value of <3%, which completely satisfies the 3GPP requirements for a 256-QAM transmission.

  • Design of a Dual-Band Load-Modulated Sequential Amplifier with Extended Back-off

    Minghui YOU  Guohua LIU  Zhiqun CHENG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/06/07
      Vol:
    E106-C No:12
      Page(s):
    808-811

    This letter presents a dual-band load-modulated sequential amplifier (LMSA). The proposed amplifier changed the attenuator terminated at the isolation port of the four-port combiner of the traditional sequential power amplifier (SPA) architecture into a reactance modulation network (RMN) for load modulation. The impedance can be maintained pure resistance by designing RMN, thus realizing high efficiency and a good portion of the output power in the multiple bands. Compared to the dual-band Doherty power amplifier with a complex dual-band load modulation network (LMN), the proposed LMSA has advantages as maintaining high output power back-off (OBO) efficiency, wide bandwidth and simple construction. A 10-watt dual-band LMSA is simulated and measured in 1.7-1.9GHz and 2.4-2.6GHz with saturated efficiencies 61.2-69.9% and 54.4-70.8%, respectively. The corresponding 9dB OBO efficiency is 46.5-57.1% and 46.4-54.4%, respectively.

  • A 24-30GHz Power Amplifier with >20-dBm Psat and <0.1-dB AM-AM Distortion for 5G Applications in 130-nm SiGe BiCMOS Open Access

    Chihiro KAMIDAKI  Yuma OKUYAMA  Tatsuo KUBO  Wooram LEE  Caglar OZDAG  Bodhisatwa SADHU  Yo YAMAGUCHI  Ning GUAN  

     
    INVITED PAPER

      Pubricized:
    2023/05/12
      Vol:
    E106-C No:11
      Page(s):
    625-634

    This paper presents a power amplifier (PA) designed as a part of a transceiver front-end fabricated in 130-nm SiGe BiCMOS. The PA shares its output antenna port with a low noise amplifier using a low-loss transmission/reception switch. The output matching network of the PA is designed to provide high output power, low AM-AM distortion, and uniform performance over frequencies in the range of 24.25-29.5GHz. Measurements of the front-end in TX mode demonstrate peak S21 of 30.3dB at 26.7GHz, S21 3-dB bandwidth of 9.8GHz from 22.2to 32.0GHz, and saturated output power (Psat) above 20dBm with power-added efficiency (PAE) above 22% from 24 to 30GHz. For a 64-QAM 400MHz bandwidth orthogonal frequency division multiplexing (OFDM) signal, -25dBc error vector magnitude (EVM) is measured at an average output power of 12.3dBm and average PAE of 8.8%. The PA achieves a competitive ITRS FoM of 92.9.

  • High-Efficiency 250-320GHz Power Amplifiers Using InP-Based Metal-Oxide-Semiconductor High-Electron-Mobility Transistors

    Yusuke KUMAZAKI  Shiro OZAKI  Naoya OKAMOTO  Naoki HARA  Yasuhiro NAKASHA  Masaru SATO  Toshihiro OHKI  

     
    PAPER

      Pubricized:
    2023/08/22
      Vol:
    E106-C No:11
      Page(s):
    661-668

    This work shows a broadband, high-efficiency power amplifier (PA) monolithic microwave integrated circuit (MMIC) that uses InP-based metal-oxide-semiconductor (MOS) high-electron-mobility transistors (HEMTs) with an extended drain-side access region and broadband conjugate matching topology. Advanced device technologies, namely, double-side-doped structures, MOS gate structures, and asymmetric gate recess, were adopted, and the length of the drain-side access region was optimized to simultaneously obtain high power and efficiency. A common-source PA MMIC based on InP-based MOS-HEMTs was fabricated, and an interstage circuit was designed to maximize the S21 per unit stage in the broadband, resulting in a record-high power-added efficiency and wide bandwidth.

  • A Compact Fully-Differential Distributed Amplifier with Coupled Inductors in 0.18-µm CMOS Technology

    Keisuke KAWAHARA  Yohtaro UMEDA  Kyoya TAKANO  Shinsuke HARA  

     
    PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    669-676

    This paper presents a compact fully-differential distributed amplifier using a coupled inductor. Differential distributed amplifiers are widely required in optical communication systems. Most of the distributed amplifiers reported in the past are single-ended or pseudo-differential topologies. In addition, the differential distributed amplifiers require many inductors, which increases the silicon cost. In this study, we use differentially coupled inductors to reduce the chip area to less than half and eliminate the difficulties in layout design. The challenge in using coupled inductors is the capacitive parasitic coupling that degrades the flatness of frequency response. To address this challenge, the odd-mode image parameters of a differential artificial transmission line are derived using a simple loss-less model. Based on the analytical results, we optimize the dimensions of the inductor with the gradient descent algorithm to achieve accurate impedance matching and phase matching. The amplifier was fabricated in 0.18-µm CMOS technology. The core area of the amplifier is 0.27 mm2, which is 57% smaller than the previous work. Besides, we demonstrated a small group delay variation of ±2.7 ps thanks to the optimization. the amplifier successfully performed 30-Gbps NRZ and PAM4 transmissions with superior jitter performance. The proposed technique will promote the high-density integration of differential traveling wave devices.

  • 128 Gbit/s Operation of AXEL with Energy Efficiency of 1.5 pJ/bit for Optical Interconnection Open Access

    Wataru KOBAYASHI  Shigeru KANAZAWA  Takahiko SHINDO  Manabu MITSUHARA  Fumito NAKAJIMA  

     
    INVITED PAPER

      Pubricized:
    2023/06/05
      Vol:
    E106-C No:11
      Page(s):
    732-738

    We evaluated the energy efficiency per 1-bit transmission of an optical light source on InP substrate to achieve optical interconnection. A semiconductor optical amplifier (SOA) assisted extended reach EADFB laser (AXEL) was utilized as the optical light source to enhance the energy efficiency compared to the conventional electro-absorption modulator integrated with a DFB laser (EML). The AXEL has frequency bandwidth extendibility for operation of over 100Gbit/s, which is difficult when using a vertical cavity surface emitting laser (VCSEL) without an equalizer. By designing the AXEL for low power consumption, we were able to achieve 64-Gbit/s, 1.0pJ/bit and 128-Gbit/s, 1.5pJ/bit operation at 50°C with the transmitter dispersion and eye closure quaternary of 1.1dB.

  • Design of CMOS Circuits for Electrophysiology Open Access

    Nick VAN HELLEPUTTE  Carolina MORA-LOPEZ  Chris VAN HOOF  

     
    INVITED PAPER

      Pubricized:
    2023/07/11
      Vol:
    E106-C No:10
      Page(s):
    506-515

    Electrophysiology, which is the study of the electrical properties of biological tissues and cells, has become indispensable in modern clinical research, diagnostics, disease monitoring and therapeutics. In this paper we present a brief history of this discipline and how integrated circuit design shaped electrophysiology in the last few decades. We will discuss how biopotential amplifier design has evolved from the classical three-opamp architecture to more advanced high-performance circuits enabling long-term wearable monitoring of the autonomous and central nervous system. We will also discuss how these integrated circuits evolved to measure in-vivo neural circuits. This paper targets readers who are new to the domain of biopotential recording and want to get a brief historical overview and get up to speed on the main circuit design concepts for both wearable and in-vivo biopotential recording.

  • Ka-Band Stacked-FET Power Amplifier IC with Adaptively Controlled Gate Capacitor and Two-Step Adaptive Bias Circuit in 45-nm SOI CMOS

    Tsuyoshi SUGIURA  Toshihiko YOSHIMASU  

     
    PAPER

      Pubricized:
    2023/01/12
      Vol:
    E106-C No:7
      Page(s):
    382-390

    This paper presents a Ka-band high-efficiency power amplifier (PA) with a novel adaptively controlled gate capacitor circuit and a two-step adaptive bias circuit for 5th generation (5G) mobile terminal applications fabricated using a 45-nm silicon on insulator (SOI) CMOS process. The PA adopts a stacked FET structure to increase the output power because of the low breakdown voltage issue of scaled MOSFETs. The novel adaptive gate capacitor circuit properly controls the RF swing for each stacked FET to achieve high efficiency in the several-dB back-off region. Further, the novel two-step adaptive bias circuit effectively controls the gate voltage for each stacked FET for high linearity and high back-off efficiency. At a supply voltage of 4 V, the fabricated PA has exhibited a saturated output power of 20.0 dBm, a peak power added efficiency (PAE) of 42.7%, a 3dB back-off efficiency of 32.7%, a 6dB back-off efficiency of 22.7%, and a gain of 15.6 dB. The effective PA area was 0.82 mm by 0.74 mm.

  • Thermal Noise Analysis of Ring Amplifier in Cyclic Analog-to-Digital Converter

    Eiki KAYAMA  Kenta MORI  Taichi MAEBOU  Yuanchi CHEN  Hao SAN  Tatsuji MATSUURA  Masao HOTTA  

     
    PAPER

      Pubricized:
    2022/11/25
      Vol:
    E106-A No:5
      Page(s):
    823-831

    This work presents the thermal noise analysis results of ring amplifiers in the MDAC of cyclic ADC. Ring amplifier is an alternative closed-loop structure for residual signal amplification with MDAC, and two types of ring amplifiers: pseudo-differential and fully-differential ring-amplifiers are considered for the implementation of MDAC in cyclic ADC. Theoretical analysis results show that power of thermal noise in MDAC with a pseudo-differential amplifier is much higher than that with a fully-differential ring-amplifier. SPICE simulation results with transient noise analyses also show the similar trend. Experimental prototype cyclic ADCs in 65nm CMOS technology are implemented with the same architecture and the same circuit components except for amplifiers. Comparison of the measured results of the two ADCs confirms the validity of the theoretical analysis results.

  • Over Octave Hybrid Continuous Modes Power Amplifier Design Based on Modified Real Frequency Technique

    Guohua LIU  Huabang ZHONG  Zhong ZHAO  Zhiqun CHENG  Minghui YOU  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2022/11/01
      Vol:
    E106-C No:5
      Page(s):
    188-192

    In this paper, a design method for an over octave hybrid continuous mode power amplifier (PA) based on modified real frequency technique (MRFT) is proposed. The extended continuous class-F/F-1 modes greatly expand the design space, which provides the possibility of over octave design, the optimal impedances at internal current-generator (I-Gen) plane and package plane are investigated. Then a novel broadband matching network based on MRFT is presented for impedance match. To verify the proposed methodology, an over octave PA with radial stub is fabricated and measured. The PA achieves a bandwidth of 133% from 0.8GHz to 4GHz, over this frequency range, the drain efficiency is 58.3-68.7% and large-signal gain is greater than 9.6dB.

  • Distortion Analysis of RF Power Amplifier Using Probability Density of Input Signal and AM-AM Characteristics

    Satoshi TANAKA  

     
    PAPER

      Pubricized:
    2022/05/11
      Vol:
    E105-A No:11
      Page(s):
    1436-1442

    When confirming the ACLR (adjacent channel leakage power ratio), which are representative indicators of distortion in the design of PA (power amplifier), it is well known how to calculate the AM-AM/PM characteristics of PA, input time series data of modulated signals, and analyze the output by Fourier analysis. In 5G (5th generation) mobile phones, not only QPSK (quadrature phase shift keying) modulation but also 16QAM (quadrature modulation), 64QAM, and 256QAM are becoming more multivalued as modulation signals. In addition, the modulation band may exceed 100MHz, and the amount of time series data increases, and the increase in calculation time becomes a problem. In order to shorten the calculation time, calculating the total amount of distortion generated by PA from the probability density of the modulation signal and the AM (amplitude modulation)-AM/PM (phase modulation) characteristics of PA is considered. For the AM-AM characteristics of PA, in this paper, IMD3 (inter modulation distortion 3) obtained from probability density and IMD3 by Fourier analysis, which are often used so long, are compared. As a result, it was confirmed that the result of probability density analysis is similar to that of Fourier analysis, when the nonlinearity is somewhat small. In addition, the agreement between the proposed method and the conventional method was confirmed with an error of about 2.0dB of ACLR using the modulation waves with a bandwidth of 5MHz, RB (resource block) being 25, and QPSK modulation.

  • A 0.4-V 29-GHz-Bandwidth Power-Scalable Distributed Amplifier in 55-nm CMOS DDC Process

    Sangyeop LEE  Shuhei AMAKAWA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    BRIEF PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    561-564

    A power-scalable wideband distributed amplifier is proposed. For reducing the power consumption of this power-hungry amplifier, it is efficient to lower the supply voltage. However, there is a hurdle owing to the transistor threshold voltage. In this work, a CMOS deeply depleted channel process is employed to overcome the hurdle.

  • Multi-Port Amplifier with Enhanced Linearity and Isolation Employing Feed-Forward Techniques

    Yasunori SUZUKI  Tetsuo HIROTA  Toshio NOJIMA  

     
    PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    501-508

    This paper proposes a new multi-port amplifier configuration that employs feed-forward techniques. In general, a multi-port amplifier is used as a transponder in a satellite transmitter. A multi-port amplifier comprises an N-in N-out input-side matrix network, N amplifiers, and an N-in N-out output-side matrix network. Based on this configuration, other undesired ports leak power to the desired port in a multi-port amplifier. If the power amplifier of a cellular base station uses a multi-port amplifier, the power leakage from the other ports causes degradation in the error vector magnitude. The proposed configuration employs N-parallel feed-forward amplifiers with a multi-port amplifier as the main amplifier. The proposed configuration drastically reduces the power leakage using the employed feed-forward techniques. An experimental 2-GHz band four-in four-out multi-port amplifier is constructed and tested. It achieves the leakage power level of -58 dB, a gain deviation of less than 0.05 dB, and a phase deviation of less than 0.45 deg. with the maximum power of 35 dBm over a 20-MHz bandwidth with the center frequency 2.14 GHz at room temperature. The experimental multi-port amplifier reduces the leakage power level by approximately 30 dB compared to that for a multi-port amplifier without the feed-forward techniques. The proposed configuration can be applied to power amplifiers in cellular base stations.

  • Analysis of Efficiency-Limiting Factors Resulting from Transistor Current Source on Class-F and Inverse Class-F Power Amplifiers Open Access

    Hiroshi YAMAMOTO  Ken KIKUCHI  Valeria VADALÀ  Gianni BOSI  Antonio RAFFO  Giorgio VANNINI  

     
    INVITED PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    449-456

    This paper describes the efficiency-limiting factors resulting from transistor current source in the case of class-F and inverse class-F (F-1) operations under saturated region. We investigated the influence of knee voltage and gate-voltage clipping behaviors on drain efficiency as limiting factors for the current source. Numerical analysis using a simplified transistor model was carried out. As a result, we have demonstrated that the limiting factor for class-F-1 operation is the gate-diode conduction rather than knee voltage. On the other hand, class-F PA is restricted by the knee voltage effects. Furthermore, nonlinear measurements carried out on a GaN HEMT validate our analytical results.

  • Evolution of Power Amplifiers for Mobile Phone Terminals from the 2nd Generation to the 5th Generation Open Access

    Satoshi TANAKA  Kenji MUKAI  Shohei IMAI  Hiroshi OKABE  

     
    INVITED PAPER

      Pubricized:
    2022/03/22
      Vol:
    E105-C No:10
      Page(s):
    421-432

    Mobile phone systems continue to evolve from the 2nd generation, which began in the early 1990s, to the 5th generation, which is now in service. Along with this evolution, the power amplifier (PA) is also evolved. The characteristics required for PA are changing with each generation. In this paper, we will give an overview of the evolution of PAs from the 2nd generation mobile phones such as GSM (global system for mobile communications) to the 5th generation mobile phones that is often called NR (new radio), in particular, the circuit system. Specifically, the following five items will be described. (1) Ramp-up and ramp-down power control circuit corresponding to GSM, (2) Self-bias circuit technology for improving linearity that becomes important after W-CDMA (wideband code division multiple access), (3) Power mode switching methods for improving efficiency at low output power, (4) Power combining methods that have become important since LTE (long term evolution), and (5) Backoff efficiency improvement methods represented by ET (envelop tracking) and Doherty PA.

  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • AlGaN/GaN HEMT on 3C-SiC/Low-Resistivity Si Substrate for Microwave Applications Open Access

    Akio WAKEJIMA  Arijit BOSE  Debaleen BISWAS  Shigeomi HISHIKI  Sumito OUCHI  Koichi KITAHARA  Keisuke KAWAMURA  

     
    INVITED PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    457-465

    A detailed investigation of DC and RF performance of AlGaN/GaN HEMT on 3C-SiC/low resistive silicon (LR-Si) substrate by introducing a thick GaN layer is reported in this paper. The hetero-epitaxial growth is achieved by metal organic chemical vapor deposition (MOCVD) on a commercially prepared 6-inch LR-Si substrate via a 3C-SiC intermediate layer. The reported HEMT exhibited very low RF loss and thermally stable amplifier characteristics with the introduction of a thick GaN layer. The temperature-dependent small-signal and large-signal characteristics verified the effectiveness of the thick GaN layer on LR-Si, especially in reduction of RF loss even at high temperatures. In summary, a high potential of the reported device is confirmed for microwave applications.

  • An AM-PM Compensation of Cross-Coupled Capacitance Neutralization Technique in a Differential Power Amplifier

    Takuma TORII  Masaomi TSURU  

     
    PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    492-500

    In this study, AM-PM compensation of the cross-coupled capacitance neutralization technique is discussed. Cgd neutralization leads to AM-PM compensation of a power amplifier with negligible change of AM-AM characteristics. AM-PM compensation was confirmed via circuit analysis and measurements. The formulation analysis showed that AM-PM compensation can be derived via gm variation against input power with capacitance neutralization. A differential power amplifier with capacitance neutralization was fabricated with GaN high-electron-mobility transistors. The AM-PM characteristic of the fabricated differential power amplifier was measured at 17.7 GHz. It showed AM-PM reduction of 22° at compared to a single-phase power amplifier without capacitance neutralization at output power of 35 dBm.

1-20hit(597hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.