In this paper, a sepic-type single-stage electronic ballast (STSSEB) is proposed, which is derived from the combination of a sepic converter and a half-bridge inverter. The ballast can not only step down input voltage directly but achieve high power factor, reduce voltage stress, improve efficiency and lower cost. Since component stress is reduced significantly, the presented ballast can be applied to high voltage mains. Derivation of the STSSEB is first presented. Then, analysis, design and practical consideration for the STSSEB are discussed. A 347 Vac 60 W prototype has been simulated and implemented. Simulations and experimental results have verified the feasibility of the proposed STSSEB.
Kazuaki MIYANAGA Yoshiki KAYANO Takashi KOMAKINE Hiroshi INOUE Tasuku TAKAGI
In this paper, to clarify the thermal effect of the bridge for long lifetime contacts, the effects of heat conductivity on bridge break at different material contact pairs were discussed experimentally. To examine the relationship between the bridge and material, the electrode materials of the anode and the cathode were chosen as the same and the different material pairs in this experiment. Ag, AgPd60 and Pd were chosen as the electrode materials, because Ag, AgPd60 and Pd had the different thermal diffusivity. Firstly, the voltage waveforms in the bridge with different material pair were compared to the voltage waveform with the same material pair case. Secondary, the effects of heat conductivity on the break of bridge were discussed. In the results, the bridge voltage waveform depends on the electrode material at anode side. The length of the bridge at bridge break depends on the heat conductivity of the electrode material at anode side. This study provides the basic considerations on the thermal condition of the bridge break.
Kazuaki MIYANAGA Yoshiki KAYANO Tasuku TAKAGI Hiroshi INOUE
In order to clarify the physics of contact life time, the relationship between heat capacity of holder and shape of bridge (length and diameter) is discussed in this paper. The AgPd60 alloy is chosen as electrode material. Two holders with different heat capacity are comprised of copper plate and cylinder. The shape of the bridge at the low speed breaking contact is observed by using the high speed digital camera. It was demonstrated that the shape of the bridge is changed by the response and distribution of the temperature.
This paper presents a comprehensive explanation of the formation of the electric arc between opening contacts in a current carrying electric circuit. As the contacts begin to open a molten metal bridge forms between them. The rupture of this bridge and the initial formation of the electric arc are studied in both atmospheric air and vacuum using experiments to determine the direction of metal transfer between the contacts as a function of time after the rupture of the molten metal bridge. High speed streak photography is also used to show the rupture of the molten metal bridge and the initial formation of the electric arc. Analysis of these data show that a very high-pressure, high-temperature metal vapor zone exists between the contacts after the rupture of the molten metal bridge. Under this condition a pseudo-arc forms where current is carried by metal ions and an anomalous, high net transfer of metal to the cathodic contact occurs. The pressure in this region decreases rapidly and there is a transition to the usual electric arc, which still operates in the metal vapor. In this arc the current is now mostly carried by electrons. The data shows that there is still a net transfer of metal to the cathode, but now its volume is a function of the arcing time.
Teruhiko KOHAMA Sunao TOKIMATSU Akio INOUE
Method for eliminating magnetic saturation in low-voltage and high-current DC-DC converter with fast dynamic response is described. The magnetic saturation is observed in onboard isolated bridge-type DC-DC converter due to inherently asymmetrical PWM signal during transient condition. The saturation is not eliminated by using ac-coupling capacitor for transformer. Mechanism of the saturation is analyzed and confirmed by experiments. Based on the analysis a solution for the magnetic saturation is proposed. The effectiveness of proposed method is also confirmed by experiments.
Terdsak INTACHOT Nontawat CHULADAYCHA Yothin PREMPRANEERACH Shuichi NITTA
This paper presents the new switching converter model used for analyzing the generation mechanism of ringing ground leakage (GL) current, generated during the transient, at switch on/off of any switching converter. By applying the Norton model, the proposed new model of switching converter can be formulated. The ringing GL current is evaluated at the switching on/off of the unbalanced (half-bridge converter) and the balanced converter (full-bridge converter) for bidirectional D.C. motor drive used as an example. It is concluded that the measured and simulated results of the generated GL current agree well with the numerical analysis results, analyzed by the proposed new model of switching converter, in terms of the minimum or maximum peak currents and the ringing frequency.
Haipeng WANG Feng XU Ya-Qiu JIN Kazuo OUCHI
An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.
Kazuaki MIYANAGA Yoshiki KAYANO Tasuku TAKAGI Hiroshi INOUE
It is necessary to know how the contact voltage and contact area vary with time to clarify the physics of contact lifetime and contact resistance. In this paper, to clarify the effect of the heating value on the diameter of the contact area, the variations of the contact voltage and contact diameter with time are measured at a low-speed breaking contact near the thermal equilibrium condition under which a stable bridge is generated. The effect of the heating value on the relationship between the contact diameter and the length of the bridge at breaking is also discussed. In the results, the contact voltage waveform was found to be macroscopically proportional to the displacement of the moving electrode lc. On the other hand, the contact diameter dc decreased slightly with increasing lc. At all currents investigated dc decreased when lc increased. The length of the bridge at breaking was increased by increasing the current. A large heating value of the contact area resulted in a long bridge because the volume of the melted metal increases.
Yizhi REN Mingchu LI Kouichi SAKURAI
Current Public Key Infrastructures suffer from a scaling problem, and some may have security problems, even given the topological simplification of bridge certification authorities. This paper analyzes the security problems in Bridge Certificate Authorities (BCA) model by using the concept of "impersonation risk," and proposes a new modified BCA model, which enhances its security, but is a bit more complex incertification path building and implementation than the existing one.
Dong KIM Kwanhu BANG Seung-Hwan HA Chanik PARK Sung Woo CHUNG Eui-Young CHUNG
We propose a Solid-State Disk (SSD) with a Double Data Rate (DDR) DRAM interface for high-performance PCs. Traditional SSDs simply inherit the interface protocol of Hard Disk Drives (HDD) such as Parallel Advanced Technology Attachment (PATA) or Serial-ATA (SATA) for maintaining the compatibility. However, SSD itself provides much higher performance than HDD, hence the interface also needs to be enhanced. Unlike the traditional SSDs, the proposed SSD with DDR DRAM interface is placed in the North Bridge which provides two or more DDR DRAM interface ports in high-performance PCs. The novelty of our work is on DQS signaling scheme which allows arbitrary Column Address Strobe (CAS) latency unlike typical DDR DRAM interface scheme. The experimental results show that the proposed SSD maximally outperforms the traditional SSD by 8.7 times in read mode, by 1.5 times in write mode. Also, for synthetic workloads, the proposed scheme shows performance improvement over the conventional architecture by a factor of 1.6 times.
Yu SASAKI Lei WANG Kazuo OHTA Noboru KUNIHIRO
In this paper, we propose password recovery attacks against challenge-response authentication protocols. Our attacks use a message difference for a MD5 collision attack proposed in IEICE 2008. First, we show how to efficiently find a message pair that collides with the above message difference. Second, we show that a password used in authenticated post office protocol (APOP) can be recovered practically. We also show that the password recovery attack can be applied to a session initiation protocol (SIP) and digest authentication. Our attack can recover up to the first 31 password characters in a short time and up to the first 60 characters faster than the naive search method. We have implemented our attack and confirmed that 31 characters can be successfully recovered.
Yoshiki KAYANO Hikaru MIURA Kazuaki MIYANAGA Hiroshi INOUE
Arc discharge generated by breaking electrical contact is considered as a main source of an undesired electromagnetic (EM) noise. To clarify mechanism of generation of the EM noise, feature extraction of bridge and short-time arc waveforms generated by slowly breaking Ag contact was discussed experimentally. The short-duration time arc before the ignition of the continuous metallic arc discharge was observed. The highest probability density voltage is defined as short-arc sustainable voltage (SASV). The relationship between SASV and duration of short-time arc was quantified experimentally. It is revealed that as the arc voltage of the short-time arc is higher, its duration becomes longer.
Seong-Hee PARK Seong-Hee LEE Il-Soon JANG Sang-Sung CHOI Je-Hoon LEE Younggap YOU
This paper presented a new method to transfer isochronous data through an IEEE 1394 over UWB (ultra wideband) network. The goal of this research is to implement a complete heterogeneous system without commercial IEEE 1394 link chips supporting the bridge-aware function. The method resolving this dedicated chip-less situation, was employed a new bridge adapting a pseudo connection management protocol (CMP). This approach made a wired 1394 devices as an IEEE 1394 over UWB device. This method allowed an IEEE 1394 equipment to transfer an isochronous data using a UWB wireless communication network. The result of this approach was demonstrated successfully via an IEEE 1394 over UWB bridge module. The proposed CMP and IEEE 1394 over UWB bridge module can exchange isochronous data through an IEEE 1394 over UWB network. This method makes an IEEE 1394 equipment transfer an isochronous data using a UWB wireless channel.
Yo-Tak SONG Hai-Young LEE Masayoshi ESASHI
This paper presents the design, fabrication and characterization of a low actuation voltage capacitive shunt RF-MEMS switch for microwave and millimeter-wave applications based on a corrugated electrostatic actuated bridge suspended over a concave structure of coplanar waveguide (CPW), with sputtered nickel as the structural material for the bridge and gold for CPW line, fabricated on high-resistivity silicon (HRS) substrate using IC compatible processes for modular integration in a communication devices. The residual stress is very low because having both ends corrugated structure of the bridge in concave structure. The residual stress is calculated about 3-15 MPa in corrugated bridge and 30 MPa in flat bridge. The corrugated bridge of the concave structure requires lower actuation voltages 20-80 V than 50-100 V of the flat bridge of the planar structure in 0.3 to 1.0 µm thick Ni capacitive shunt RF-MEMS switch, in insertion loss 1.0 dB, return loss 12 dB, power loss 10 dB and isolation 28 dB from 0.5 up to 40 GHz. The residual stress of the bridge material and structure is critical to lower the actuation voltage.
Kazuaki MIYANAGA Yoshiki KAYANO Hiroshi INOUE
In this paper, the separation of heat generation and heat transfer related to temperature rise of silver palladium contact was investigated experimentally in order to predict the temperature rise of contact by the use conditions such as voltage range between 25 to 40 V, current range between 3.2 to 5.0 A and silver palladium alloy (AgPd) materials. Firstly, relationship between temperature rise of contact and supply power was discussed. The effects of heat generation and heat transfer on temperature rise were separated and quantified by least squares method. Secondly, effects of durations and integral powers of bridge and arc on temperature rise were also discussed by changing supply power. Results show that the integral power of the bridge increases when supply power increases. As the supply power increases, integral power of arc also increases. The temperature rise is dominated by integral power of bridge. Remarkable difference of bridge duration can not be seen in the five materials (AgPd30, AgPd40, AgPd50, AgPd70 and Pd). The supply power is increased, arc duration gets longer. As weight percent of Pd content increases, the effect of supply power on arc duration becomes larger. Consequently, the integral power of arc increases. This study is a basic consideration to realize methods predicting temperature rise of contact.
Hiroyuki ISHIDA Shosuke SUZUKI Hideaki SONE Hiroshi INOUE Masanari TANIGUCHI Tasuku TAKAGI
The mechanism of dark bridge formed with very slow contact separating speed was empirically shown with some discussions from the experimental results which the authors have obtained by using the cantilever system for controlling contact gap. By analyzing the obtained results, we will assume some concept of formation mechanism of dark bridge. Since the thermal effect is inevitable in the bridge formation, this will be inferred from two points; one is the a-spot change at initial state of bridge forming, and another one is the thermal expansion due to bridge current that affects the shape of bridge. This paper will show from these two points the conceptual bridge formation mechanism in case of non-melting state of contact bridge which is called here dark bridge.
Chang-Hua LIN John Yanhao CHEN Fuhliang WEN
This paper proposes a backlight module which drives multiple cold-cathode fluorescent lamps (CCFLs) with a current mirror technique to equalize the driving current for each lamp. We first adopt a half-bridge parallel-resonant inverter as the main circuit and use a single-input, multiple-output transformer to drive the multi-CCFLs. Next, we introduce current-mirror circuits to create a new current-sharing circuit, in which its current reference node and the parallel-connected multi-load nodes are used to accurately equalize all CCFLs' driving current. This will balance each lamp's brightness and, consequently, improve the picture display quality of the related liquid crystal display (LCD). This paper details the design concept for each component value with the assistance of an actual design example. The results of the example are examined with its actual measurements, which consequently verify the correctness of the proposed control strategy.
Hiroyuki ISHIDA Masanari TANIGUCHI Hideaki SONE Hiroshi INOUE Tasuku TAKAGI
From the authors' investigations on the initial instantaneous phenomena in breaking contacts, we have found the two types of bridge, i.e. one is a brightened (luminous) bridge and another one is a dark (non-luminous) one. This paper discusses on the dark bridge formed between contacts when the separation speed is very small. The following items are mentioned in this paper: a) bridge model and theory on the relationship between bridge length and diameter. b) thermal flow from bridge to its vicinity, c) deduction of a thermal equilibrium condition from the calculation of thermal flow time constant. d) experimental works, e) discussions and f) conclusions. In conclusion, we see the coincidence of the tendency of the theory and experiment carried out on the relationship between bridge diameter and length.
Tatsuya HOSOTANI Kazurou HARADA Yoshiyuki ISHIHARA Toshiyuki TODAKA
This paper presents a novel self-excited ZVS half-bridge converter. This converter including a self-oscillating control circuit is very simply constructed. The converter achieves excellent efficiency, low voltage stress across the switches and low EMI noise by using zero-voltage-switching technique. This converter stores not only magnetic energy in the primary winding of the transformer but also electrostatic energy on the resonant capacitor during the on-periods, so that the converter realizes the miniaturization of the transformer, the reduced conduction losses and the low current stress in the switch. This paper analyzes the behavior of static characteristics by using an extending state-space-averaging method and presents design equations. Based on the analysis, two prototype converters are designed for a 120 W output and a 350 W output. Experimental results are given for two converters and they confirm the validity of the theory. The proposed converters have displayed excellent performance.
Sergey MOISEEV Koji SOSHIN Mutsuo NAKAOKA
In this paper, a novel type of the step-up high frequency transformer linked full-bridge soft-switching phase-shift PWM DC-DC power converter with ZVS and ZCS bridge legs is proposed for small scale fuel cell power generation systems, automotive AC power supplies. A tapped inductor filter with a freewheeling diode is implemented in the proposed soft-switching DC-DC power converter to minimize the circulating current in the high-frequency step-up transformer primary side and high-frequency inverter stage. Using a tapped inductor filter with a freewheeling diode makes possible to reduce the circulating current without any active switches and theirs gate-drive circuits. The operating principle of the proposed DC-DC power converter with each operation mode during a half cycle of the steady state operation is explained. The optimum design of the tapped inductor turns ratio is described on the basis of the circuit simulation results. Developing 1 kW 100 kHz prototype with power MOSFETs and 36 V DC source verifies the practical effectiveness of the proposed soft-switching DC-DC power converter. The actual efficiency of the proposed DC-DC power converter is obtained 94% for the wide load and output voltage variation ranges.