1-2hit |
Dechuan CHEN Weiwei YANG Jianwei HU Yueming CAI Xin LIU
In this paper, we identify the tradeoff between security and reliability in the amplify-and-forward (AF) distributed beamforming (DBF) cooperative network with K untrusted relays. In particular, we derive the closed-form expressions for the connection outage probability (COP), the secrecy outage probability (SOP), the tradeoff relationship, and the secrecy throughput. Analytical and simulation results demonstrate that increasing K leads to the enhancement of the reliability performance, but the degradation of the security performance. This tradeoff also means that there exists an optimal K maximizing the secrecy throughput.
Lei WANG Xinrong GUAN Yueming CAI Weiwei YANG Wendong YANG
This work investigates the physical layer security for three cooperative automatic-repeat-request (CARQ) protocols, including the decode-and-forward (DF) CARQ, opportunistic DF (ODF) CARQ, and the distributed space-time code (DSTC) CARQ. Assuming that there is no instantaneous channel state information (CSI) of legitimate users' channel and eavesdropper's channel at the transmitter, the connection outage performance and secrecy outage performance are derived to evaluate the reliability and security of each CARQ protocol. Then, we redefine the concept of the secrecy throughput to evaluate the overall efficiency of the system in terms of maintaining both reliable and secure transmission. Furthermore, through an asymptotic analysis in the high signal-to-noise ratio (SNR) regime, the direct relationship between reliability and security is established via the reliability-security tradeoff (RST). Numerical results verify the analysis and show the efficiency of the CARQ protocols in terms of the improvement on the secrecy throughput. More interestingly, increasing the transmit SNR and the maximum number of transmissions of the ARQ protocols may not achieve a security performance gain. In addition, the RST results underline the importance of determining how to balance the reliability vs. security, and show the superiority of ODF CARQ in terms of RST.