Keyword Search Result

[Keyword] continuous(155hit)

1-20hit(155hit)

  • Temporal-Based Action Clustering for Motion Tendencies

    Xingyu QIAN  Xiaogang CHEN  Aximu YUEMAIER  Shunfen LI  Weibang DAI  Zhitang SONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/05/02
      Vol:
    E106-D No:8
      Page(s):
    1292-1295

    Video-based action recognition encompasses the recognition of appearance and the classification of action types. This work proposes a discrete-temporal-sequence-based motion tendency clustering framework to implement motion clustering by extracting motion tendencies and self-supervised learning. A published traffic intersection dataset (inD) and a self-produced gesture video set are used for evaluation and to validate the motion tendency action recognition hypothesis.

  • Over Octave Hybrid Continuous Modes Power Amplifier Design Based on Modified Real Frequency Technique

    Guohua LIU  Huabang ZHONG  Zhong ZHAO  Zhiqun CHENG  Minghui YOU  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2022/11/01
      Vol:
    E106-C No:5
      Page(s):
    188-192

    In this paper, a design method for an over octave hybrid continuous mode power amplifier (PA) based on modified real frequency technique (MRFT) is proposed. The extended continuous class-F/F-1 modes greatly expand the design space, which provides the possibility of over octave design, the optimal impedances at internal current-generator (I-Gen) plane and package plane are investigated. Then a novel broadband matching network based on MRFT is presented for impedance match. To verify the proposed methodology, an over octave PA with radial stub is fabricated and measured. The PA achieves a bandwidth of 133% from 0.8GHz to 4GHz, over this frequency range, the drain efficiency is 58.3-68.7% and large-signal gain is greater than 9.6dB.

  • Multitarget 2-D DOA Estimation Using Wideband LFMCW Signal and Triangle Array Composed of Three Receiver Antennas

    Wentao ZHANG  Chen MIAO  Wen WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    307-316

    Direction of arrival (DOA) estimation has been a primary focus of research for many years. Research on DOA estimation continues to be immensely popular in the fields of the internet of things, radar, and smart driving. In this paper, a simple new two-dimensional DOA framework is proposed in which a triangular array is used to receive wideband linear frequency modulated continuous wave signals. The mixed echo signals from various targets are separated into a series of single-tone signals. The unwrapping algorithm is applied to the phase difference function of the single-tone signals. By using the least-squares method to fit the unwrapped phase difference function, the DOA information of each target is obtained. Theoretical analysis and simulation demonstrate that the framework has the following advantages. Unlike traditional phase goniometry, the framework can resolve the trade-off between antenna spacing and goniometric accuracy. The number of detected targets is not limited by the number of antennas. Moreover, the framework can obtain highly accurate DOA estimation results.

  • ECG Signal Reconstruction Using FMCW Radar and a Convolutional Neural Network for Contactless Vital-Sign Sensing

    Daiki TODA  Ren ANZAI  Koichi ICHIGE  Ryo SAITO  Daichi UEKI  

     
    PAPER-Sensing

      Pubricized:
    2022/06/29
      Vol:
    E106-B No:1
      Page(s):
    65-73

    A method of radar-based contactless vital-sign sensing and electrocardiogram (ECG) signal reconstruction using deep learning is proposed. A radar system is an effective tool for contactless vital-sign sensing because it can measure a small displacement of the body surface without contact. However, most of the conventional methods have limited evaluation indices and measurement conditions. A method of measuring body-surface-displacement signals by using frequency-modulated continuous-wave (FMCW) radar and reconstructing ECG signals using a convolutional neural network (CNN) is proposed. This study conducted two experiments. First, we trained a model using the data obtained from six subjects breathing in a seated condition. Second, we added sine wave noise to the data and trained the model again. The proposed model is evaluated with a correlation coefficient between the reconstructed and actual ECG signal. The results of first experiment show that their ECG signals are successfully reconstructed by using the proposed method. That of second experiment show that the proposed method can reconstruct signal waveforms even in an environment with low signal-to-noise ratio (SNR).

  • Resource Efficient Top-K Sorter on FPGA

    Binhao HE  Meiting XUE  Shubiao LIU  Feng YU  Weijie CHEN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/03/02
      Vol:
    E105-A No:9
      Page(s):
    1372-1376

    The top-K sorting is a variant of sorting used heavily in applications such as database management systems. Recently, the use of field programmable gate arrays (FPGAs) to accelerate sorting operation has attracted the interest of researchers. However, existing hardware top-K sorting algorithms are either resource-intensive or of low throughput. In this paper, we present a resource-efficient top-K sorting architecture that is composed of L cascading sorting units, and each sorting unit is composed of P sorting cells. K=PL largest elements are produced when a variable length input sequence is processed. This architecture can operate at a high frequency while consuming fewer resources. The experimental results show that our architecture achieved a maximum 1.2x throughput-to-resource improvement compared to previous studies.

  • A Solar-Cell-Assisted, 99% Biofuel Cell Area Reduced, Biofuel-Cell-Powered Wireless Biosensing System in 65nm CMOS for Continuous Glucose Monitoring Contact Lenses Open Access

    Guowei CHEN  Kiichi NIITSU  

     
    BRIEF PAPER

      Pubricized:
    2022/01/05
      Vol:
    E105-C No:7
      Page(s):
    343-348

    This brief proposes a solar-cell-assisted wireless biosensing system that operates using a biofuel cell (BFC). To facilitate BFC area reduction for the use of this system in area-constrained continuous glucose monitoring contact lenses, an energy harvester combined with an on-chip solar cell is introduced as a dedicated power source for the transmitter. A dual-oscillator-based supply voltage monitor is employed to convert the BFC output into digital codes. From measurements of the test chip fabricated in 65-nm CMOS technology, the proposed system can achieve 99% BFC area reduction.

  • Analysis and Design of Continuous-Time Comparator Open Access

    Takahiro MIKI  

     
    INVITED PAPER

      Pubricized:
    2021/10/02
      Vol:
    E104-C No:10
      Page(s):
    635-642

    Applications of continuous-time (CT) comparator include relaxation oscillators, pulse width modulators, and so on. CT comparator receives a differential input and outputs a strobe ideally when the differential input crosses zero. Unlike the DT comparators with positive feedback circuit, amplifiers consuming static power must be employed in CT comparators to amplify the input signal. Therefore, minimization of comparator delay under the constraint of power consumption often becomes an issue. This paper analyzes transient behavior of a CT comparator. Using “constant delay approximation”, the comparator delay is derived as a function of input slew rate, number of stages of the preamplifier, and device parameters in each block. This paper also discusses optimum design of the CT comparator. The condition for minimum comparator delay is derived with keeping power consumption constant. The results include that the optimum DC gain of the preamplifier is e∼e3 per stage depending on the element which dominates load capacitance of the preamplifier.

  • Continuous Noise Masking Based Vocoder for Statistical Parametric Speech Synthesis

    Mohammed Salah AL-RADHI  Tamás Gábor CSAPÓ  Géza NÉMETH  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/02/10
      Vol:
    E103-D No:5
      Page(s):
    1099-1107

    In this article, we propose a method called “continuous noise masking (cNM)” that allows eliminating residual buzziness in a continuous vocoder, i.e. of which all parameters are continuous and offers a simple and flexible speech analysis and synthesis system. Traditional parametric vocoders generally show a perceptible deterioration in the quality of the synthesized speech due to different processing algorithms. Furthermore, an inaccurate noise resynthesis (e.g. in breathiness or hoarseness) is also considered to be one of the main underlying causes of performance degradation, leading to noisy transients and temporal discontinuity in the synthesized speech. To overcome these issues, a new cNM is developed based on the phase distortion deviation in order to reduce the perceptual effect of the residual noise, allowing a proper reconstruction of noise characteristics, and model better the creaky voice segments that may happen in natural speech. To this end, the cNM is designed to keep only voice components under a condition of the cNM threshold while discarding others. We evaluate the proposed approach and compare with state-of-the-art vocoders using objective and subjective listening tests. Experimental results show that the proposed method can reduce the effect of residual noise and can reach the quality of other sophisticated approaches like STRAIGHT and log domain pulse model (PML).

  • Performance Improvement of the Catastrophic CPM Scheme with New Split-Merged MNSED

    Richard Hsin-Hsyong YANG  Chia-Kun LEE  Shiunn-Jang CHERN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2091-2103

    Continuous phase modulation (CPM) is a very attractive digital modulation scheme, with constant envelope feature and high efficiency in meeting the power and bandwidth requirements. CPM signals with pairs of input sequences that differ in an infinite number of positions and map into pairs of transmitted signals with finite Euclidean distance (ED) are called catastrophic. In the CPM scheme, data sequences that have the catastrophic property are called the catastrophic sequences; they are periodic difference data patterns. The catastrophic sequences are usually with shorter length of the merger. The corresponding minimum normalized squared ED (MNSED) is smaller and below the distance bound. Two important CPM schemes, viz., LREC and LRC schemes, are known to be catastrophic for most cases; they have poor overall power and bandwidth performance. In the literatures, it has been shown that the probability of generating such catastrophic sequences are negligible, therefore, the asymptotic error performance (AEP) of those well-known catastrophic CPM schemes evaluated with the corresponding MNSED, over AWGN channels, might be too negative or pessimistic. To deal with this problem in AWGN channel, this paper presents a new split-merged MNSED and provide criteria to explore which conventional catastrophic CPM scheme could increase the length of mergers with split-merged non-periodic events, effectively. For comparison, we investigate the exact power and bandwidth performance for LREC and LRC CPM for the same bandwidth occupancy. Computer simulation results verify that the AEP evaluating with the split-merged MNSED could achieve up to 3dB gain over the conventional approach.

  • A 385×385μm2 0.165V 0.27nW Fully-Integrated Supply-Modulated OOK Transmitter in 65nm CMOS for Glasses-Free, Self-Powered, and Fuel-Cell-Embedded Continuous Glucose Monitoring Contact Lens Open Access

    Kenya HAYASHI  Shigeki ARATA  Ge XU  Shunya MURAKAMI  Cong Dang BUI  Atsuki KOBAYASHI  Kiichi NIITSU  

     
    BRIEF PAPER

      Vol:
    E102-C No:7
      Page(s):
    590-594

    This work presents the lowest power consumption sub-mm2 supply-modulated OOK transmitter for self-powering a continuous glucose monitoring (CGM) contact lens. By combining the transmitter with a glucose fuel cell that functions as both the power source and a sensing transducer, a self-powered CGM contact lens was developed. The 385×385μm2 test chip implemented in 65-nm standard CMOS technology operates at 270pW with a supply voltage of 0.165V. Self-powered operation of the transmitter using a 2×2mm2 solid-state glucose fuel cell was thus demonstrated.

  • Serially Concatenated CPM in Two-Way Relay Channels with Physical-Layer Network Coding

    Nan SHA  Lihua CHEN  Yuanyuan GAO  Mingxi GUO  Kui XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:7
      Page(s):
    934-937

    A physical-layer network coding (PNC) scheme is developed using serially concatenated continuous phase modulation (SCCPM) with symbol interleavers in a two-way relay channel (TWRC), i.e., SCCPM-PNC. The decoding structure of the relay is designed and the corresponding soft input soft output (SISO) iterative decoding algorithm is discussed. Simulation results show that the proposed SCCPM-PNC scheme performs good performance in bit error rate (BER) and considerable improvements can be achieved by increasing the interleaver size and number of iterations.

  • Analysis of Regular Sampling of Chaotic Waveform and Chaotic Sampling of Regular Waveform for Random Number Generation

    Kaya DEMiR  Salih ERGÜN  

     
    PAPER

      Vol:
    E102-A No:6
      Page(s):
    767-774

    This paper presents an analysis of random number generators based on continuous-time chaotic oscillators. Two different methods for random number generation have been studied: 1) Regular sampling of a chaotic waveform, and 2) Chaotic sampling of a regular waveform. Kernel density estimation is used to analytically describe the distribution of chaotic state variables and the probability density function corresponding to the output bit stream. Random bit sequences are generated using analytical equations and results from numerical simulations. Applying the concepts of autocorrelation and approximate entropy, randomness quality of the generated bit sequences are assessed to analyze relationships between the frequencies of the regular and chaotic waveforms used in both random number generation methods. It is demonstrated that in both methods, there exists certain ratios between the frequencies of regular and chaotic signal at which the randomness of the output bit stream changes abruptly. Furthermore, both random number generation methods have been compared against their immunity to interference from external signals. Analysis shows that chaotic sampling of regular waveform method provides more robustness against interference compared to regular sampling of chaotic waveform method.

  • Mutual Interference Suppression and Signal Restoration in Automotive FMCW Radar Systems

    Sohee LIM  Seongwook LEE  Jung-Hwan CHOI  Jungmin YOON  Seong-Cheol KIM  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/12/11
      Vol:
    E102-B No:6
      Page(s):
    1198-1208

    This paper presents an interference suppression and signal restoration technique that can create the clean signals required by automotive frequency-modulated continuous wave radar systems. When a radar signal from another radar system interferes with own transmitted radar signal, the target detection performance is degraded. This is because the beat frequency corresponding to the target cannot be estimated owing to the increase in the noise floor. In this case, advanced weighted-envelope normalization or wavelet denoising can be used to mitigate the effect of the interference; however, these methods can also lead to the loss of the desired signal containing the range and velocity information of the target. Therefore, we propose a method based on an autoregressive model to restore a signal damaged by mutual interference. The method uses signals that are not influenced by the interference to restore the signal. In experiments conducted using two different automotive radar systems, our proposed method is demonstrated to effectively suppress the interference and restore the desired signal. As a result, the noise floor resulting from the mutual interference was lowered and the beat frequency corresponding to the desired target was accurately estimated.

  • Design of CPM-PNC Using the Titled-Phase Model over AWGN Channels

    Nan SHA  Mingxi GUO  Yuanyuan GAO  Lihua CHEN  Kui XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:2
      Page(s):
    476-479

    In this letter, a physical-layer network coding (PNC) scheme based on continuous phase modulation (CPM) signal using the titled-phase model, i.e., TIP-CPM-PNC, is presented, and the combined titled-phase state trellis for the superimposed CPM signal in TIP-CPM-PNC is discussed. Simulation results show that the proposed scheme with low decoding complexity can achieve the same error performance as CPM-PNC using the traditional-phase model.

  • Improving Spectral Efficiency of Non-Orthogonal Space Time Block Coded-Continuous Phase Modulation

    Kazuyuki MORIOKA  Satoshi YAMAZAKI  David ASANO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2024-2032

    We consider space time block coded-continuous phase modulation (STBC-CPM), which has the advantages of both STBC and CPM at the same time. A weak point of STBC-CPM is that the normalized spectral efficiency (NSE) is limited by the orthogonality of the STBC and CPM parameters. The purpose of this study is to improve the NSE of STBC-CPM. The NSE depends on the transmission rate (TR), the bit error rate (BER) and the occupied bandwidth (OBW). First, to improve the TR, we adapt quasi orthogonal-STBC (QO-STBC) for four transmit antennas and quasi-group orthogonal Toeplitz code (Q-GOTC) for eight transmit antennas, at the expense of the orthogonality. Second, to evaluate the BER, we derive a BER approximation of STBC-CPM with non-orthogonal STBC (NO-STBC). The theoretical analysis and simulation results show that the NSE can be improved by using QO-STBC and Q-GOTC. Third, the OBW depends on CPM parameters, therefore, the tradeoff between the NSE and the CPM parameters is considered. A computer simulation provides a candidate set of CPM parameters which have better NSE. Finally, the adaptation of non-orthogonal STBC to STBC-CPM can be viewed as a generalization of the study by Silvester et al., because orthogonal STBC can be thought of as a special case of non-orthogonal STBC. Also, the adaptation of Q-GOTC to CPM can be viewed as a generalization of our previous letter, because linear modulation scheme can be thought of as a special case of non-linear modulation.

  • Performance Analysis of IEEE 802.11 DCF Based on a Macroscopic State Description

    Xiang LI  Yuki NARITA  Yuta GOTOH  Shigeo SHIODA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:8
      Page(s):
    1923-1932

    We propose an analytical model for IEEE 802.11 wireless local area networks (WLANs). The analytical model uses macroscopic descriptions of the distributed coordination function (DCF): the backoff process is described by a few macroscopic states (medium-idle, transmission, and medium-busy), which obviates the need to track the specific backoff counter/backoff stages. We further assume that the transitions between the macroscopic states can be characterized as a continuous-time Markov chain under the assumption that state persistent times are exponentially distributed. This macroscopic description of DCF allows us to utilize a two-dimensional continuous-time Markov chain for simplifying DCF performance analysis and queueing processes. By comparison with simulation results, we show that the proposed model accurately estimates the throughput performance and average queue length under light, heavy, or asymmetric traffic.

  • Ripple-Free Dual-Rate Control with Two-Degree-of-Freedom Integrator

    Takao SATO  Akira YANOU  Shiro MASUDA  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:2
      Page(s):
    460-466

    A ripple-free dual-rate control system is designed for a single-input single-output dual-rate system, in which the sampling interval of a plant output is longer than the holding interval of a control input. The dual-rate system is converged to a multi-input single-output single-rate system using the lifting technique, and a control system is designed based on an error system using the steady-state variable. Because the proposed control law is designed so that the control input is constant in the steady state, the intersample output as well as the sampled output converges to the set-point without both steady-state error and intersample ripples when there is neither modeling nor disturbance. Furthermore, in the proposed method, a two-degree-of-freedom integral compensation is designed, and hence, the transient response is not deteriorated by the integral action because the integral action is canceled when there is neither modeling nor disturbance. Moreover, in the presence of the modeling error or disturbance, the integral compensation is revealed, and hence, the steady-state error is eliminated on both the intersample and sampled response.

  • Safe-Region Generation Method for Versatile Continuous Vicinity Queries in the Road Network Distance

    Tin Nilar WIN  Htoo HTOO  Yutaka OHSAWA  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:2
      Page(s):
    472-480

    This paper proposes a fast safe-region generation method for several kinds of vicinity queries including set k nearest neighbor (NN) queries, ordered kNN queries, reverse kNN queries, and distance range queries. When a user is driving a car on a road network, he/she wants to know about objects located in the vicinity of the car. However, the result changes according to the movement of the car, and therefore, the user needs to request up-to-date result to the server. On the other hand, frequent requests for up-to-date results cause heavy loadings on the server. To cope with this problem efficiently, the idea of the safe-region has been proposed, however, it takes long processing time in existing works. This paper proposes a fast generation method of the safe-region applicable to several types of vicinity queries. Through experimental evaluations, we demonstrate that the proposed method outperforms the existing algorithms in the processing time by one or two orders of magnitude.

  • BER Performance of SS System Using a Huffman Sequence against CW Jamming

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    167-175

    In this paper, we theoretically analyse the influence of intersymbol interference (ISI) and continuous wave interference (CWI) on the bit error rate (BER) performance of the spread spectrum (SS) system using a real-valued Huffman sequence under the additive white Gaussian noise (AWGN) environment. The aperiodic correlation function of the Huffman sequence has zero sidelobes except the shift-end values at the left and right ends of shift. The system can give the unified communication and ranging system because the output of a matched filter (MF) is the ideal impulse by generating transmitted signal of the bit duration T=NTc, N=2n, n=1,2,… from the sequence of length M=2kN+1, k=0,1,…, where Tc is the chip duration and N is the spreading factor. As a result, the BER performance of the system is improved with decrease in the absolute value of the shift-end value, and is not influenced by ISI if the shift-end value is almost zero-value. In addition, the BER performance of the system of the bit duration T=NTc with CWI is improved with increase in the sequence length M=2kN+1, and the system can decrease the influence of CWI.

  • Design of Programmable Wideband Low Pass Filter with Continuous-Time/Discrete-Time Hybrid Architecture

    Yohei MORISHITA  Koichi MIZUNO  Junji SATO  Koji TAKINAMI  Kazuaki TAKAHASHI  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    858-865

    This paper presents a programmable wideband low pass filter (LPF) with Continuous-Time (CT)/Discrete-Time (DT) hybrid architecture. Unlike the conventional DT LPF, the proposed LPF eliminates sample & hold circuits, enabling to expand available bandwidth. The transfer function and the influence of the circuit imperfection are derived from CT/DT hybrid analysis. A prototype has been fabricated in 40 nm CMOS process. The proposed LPF achieves 2.5 GHz bandwidth by wideband equalization, which offers capacitance ratio (Cratio) and clock frequency (fCK) programmability. The proposed LPF occupies only 0.048 mm2 of active area.

1-20hit(155hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.