Haijun ZHOU Weixiang LI Ming CHENG Yuan SUN
Traditional intuitionistic fuzzy sets and hesitant fuzzy sets will lose some information while representing vague information, to avoid this problem, this paper constructs weighted generalized hesitant fuzzy sets by remaining multiple intuitionistic fuzzy values and giving them corresponding weights. For weighted generalized hesitant fuzzy elements in weighted generalized hesitant fuzzy sets, the paper defines some basic operations and proves their operation properties. On this basis, the paper gives the comparison rules of weighted generalized hesitant fuzzy elements and presents two kinds of aggregation operators. As for weighted generalized hesitant fuzzy preference relation, this paper proposes its definition and computing method of its corresponding consistency index. Furthermore, the paper designs an ensemble learning algorithm based on weighted generalized hesitant fuzzy sets, carries out experiments on 6 datasets in UCI database and compares with various classification algorithms. The experiments show that the ensemble learning algorithm based on weighted generalized hesitant fuzzy sets has better performance in all indicators.
In the current heterogeneous wireless communication system, the sharp rise in energy consumption and the emergence of new service types pose great challenges to nowadays radio access network selection algorithms which do not take care of these new trends. So the proposed energy efficiency based multi-service heterogeneous access network selection algorithm-ESRS (Energy Saving Radio access network Selection) is intended to reduce the energy consumption caused by the traffic in the mobile network system composed of Base Stations (BSs) and Access Points (APs). This algorithm models the access network selection problem as a Multiple-Attribute Decision-Making (MADM) problem. To solve this problem, lots of methods are combined, including analytic Hierarchy Process (AHP), weighted grey relational analysis (GRA), entropy theory, simple additive weight (SAW), and utility function theory. There are two main steps in this algorithm. At first, the proposed algorithm gets the result of the user QoS of each network by dealing with the related QoS parameters, in which entropy theory and AHP are used to determine the QoS comprehensive weight, and the SAW is used to get each network's QoS. In addition to user QoS, parameters including user throughput, energy consumption utility and cost utility are also calculated in this step. In the second step, the fuzzy theory is used to define the weight of decision attributes, and weighted grey relational analysis (GRA) is used to calculate the network score, which determines the final choice. Because the fuzzy weight has a preference for the low energy consumption, the energy consumption of the traffic will be saved by choosing the network with the least energy consumption as much as possible. The simulation parts compared the performance of ESRS, ABE and MSNS algorithms. The numerical results show that ESRS algorithm can select the appropriate network based on the service demands and network parameters. Besides, it can effectively reduce the system energy consumption and overall cost while still maintaining a high overall QoS value and a high system throughput, when compared with the other two algorithms.
He TIAN Kaihong GUO Xueting GUAN Zheng WU
In order to improve the anomaly detection efficiency of network traffic, firstly, the model is established for network flows based on complex networks. Aiming at the uncertainty and fuzziness between network traffic characteristics and network states, the deviation extent is measured from the normal network state using deviation interval uniformly, and the intuitionistic fuzzy sets (IFSs) are established for the various characteristics on the network model that the membership degree, non-membership degree and hesitation margin of the IFSs are used to quantify the ownership of values to be tested and the corresponding network state. Then, the knowledge measure (KM) is introduced into the intuitionistic fuzzy weighted geometry (IFWGω) to weight the results of IFSs corresponding to the same network state with different characteristics together to detect network anomaly comprehensively. Finally, experiments are carried out on different network traffic datasets to analyze the evaluation indicators of network characteristics by our method, and compare with other existing anomaly detection methods. The experimental results demonstrate that the changes of various network characteristics are inconsistent under abnormal attack, and the accuracy of anomaly detection results obtained by our method is higher, verifying our method has a better detection performance.
We present a negative result of fuzzy extractors with computational security. Specifically, we show that, under a computational condition, a computational fuzzy extractor implies the existence of an information-theoretic fuzzy extractor with slightly weaker parameters. Our result implies that to circumvent the limitations of information-theoretic fuzzy extractors, we need to employ computational fuzzy extractors that are not invertible by non-lossy functions.
Thanh Vu DANG Hoang Trong VO Gwang Hyun YU Jin Young KIM
Capsules are fundamental informative units that are introduced into capsule networks to manipulate the hierarchical presentation of patterns. The part-hole relationship of an entity is learned through capsule layers, using a routing-by-agreement mechanism that is approximated by a voting procedure. Nevertheless, existing routing methods are computationally inefficient. We address this issue by proposing a novel routing mechanism, namely “shortcut routing”, that directly learns to activate global capsules from local capsules. In our method, the number of operations in the routing procedure is reduced by omitting the capsules in intermediate layers, resulting in lighter routing. To further address the computational problem, we investigate an attention-based approach, and propose fuzzy coefficients, which have been found to be efficient than mixture coefficients from EM routing. Our method achieves on-par classification results on the Mnist (99.52%), smallnorb (93.91%), and affNist (89.02%) datasets. Compared to EM routing, our fuzzy-based and attention-based routing methods attain reductions of 1.42 and 2.5 in terms of the number of calculations.
Ryosuke NISHIHARA Hidehiko MATSUBAYASHI Tomomoto ISHIKAWA Kentaro MORI Yutaka HATA
The frequency of uterine peristalsis is closely related to the success rate of pregnancy. An ultrasonic imaging is almost always employed for the measure of the frequency. The physician subjectively evaluates the frequency from the ultrasound image by the naked eyes. This paper aims to measure the frequency of uterine peristalsis from the ultrasound image. The ultrasound image consists of relative amounts in the brightness, and the contour of the uterine is not clear. It was not possible to measure the frequency by using the inter-frame difference and optical flow, which are the representative methods of motion detection, since uterine peristaltic movement is too small to apply them. This paper proposes a measurement method of the frequency of the uterine peristalsis from the ultrasound image in the implantation phase. First, traces of uterine peristalsis are semi-automatically done from the images with location-axis and time-axis. Second, frequency analysis of the uterine peristalsis is done by Fourier transform for 3 minutes. As a result, the frequency of uterine peristalsis was known as the frequency with the dominant frequency ingredient with maximum value among the frequency spectrums. Thereby, we evaluate the number of the frequency of uterine peristalsis quantitatively from the ultrasound image. Finally, the success rate of pregnancy is calculated from the frequency based on Fuzzy logic. This enabled us to evaluate the success rate of pregnancy by measuring the uterine peristalsis from the ultrasound image.
Shakhnaz AKHMEDOVA Vladimir STANOVOV Sophia VISHNEVSKAYA Chiori MIYAJIMA Yukihiro KAMIYA
This study is focused on the automated detection of a complex system operator's condition. For example, in this study a person's reaction while listening to music (or not listening at all) was determined. For this purpose various well-known data mining tools as well as ones developed by authors were used. To be more specific, the following techniques were developed and applied for the mentioned problems: artificial neural networks and fuzzy rule-based classifiers. The neural networks were generated by two modifications of the Differential Evolution algorithm based on the NSGA and MOEA/D schemes, proposed for solving multi-objective optimization problems. Fuzzy logic systems were generated by the population-based algorithm called Co-Operation of Biology Related Algorithms or COBRA. However, firstly each person's state was monitored. Thus, databases for problems described in this study were obtained by using non-contact Doppler sensors. Experimental results demonstrated that automatically generated neural networks and fuzzy rule-based classifiers can properly determine the human condition and reaction. Besides, proposed approaches outperformed alternative data mining tools. However, it was established that fuzzy rule-based classifiers are more accurate and interpretable than neural networks. Thus, they can be used for solving more complex problems related to the automated detection of an operator's condition.
Incident ticket classification plays an important role in the complex system maintenance. However, low classification accuracy will result in high maintenance costs. To solve this issue, this paper proposes a fuzzy output support vector machine (FOSVM) based incident ticket classification approach, which can be implemented in the context of both two-class SVMs and multi-class SVMs such as one-versus-one and one-versus-rest. Our purpose is to solve the unclassifiable regions of multi-class SVMs to output reliable and robust results by more fine-grained analysis. Experiments on both benchmark data sets and real-world ticket data demonstrate that our method has better performance than commonly used multi-class SVM and fuzzy SVM methods.
Ling YANG Yuanqi FU Zhongke WANG Xiaoqiong ZHEN Zhipeng YANG Xingang FAN
A new fuzzy level set method (FLSM) based on the global search capability of quantum particle swarm optimization (QPSO) is proposed to improve the stability and precision of image segmentation, and reduce the sensitivity of initialization. The new combination of QPSO-FLSM algorithm iteratively optimizes initial contours using the QPSO method and fuzzy c-means clustering, and then utilizes level set method (LSM) to segment images. The new algorithm exploits the global search capability of QPSO to obtain a stable cluster center and a pre-segmentation contour closer to the region of interest during the iteration. In the implementation of the new method in segmenting liver tumors, brain tissues, and lightning images, the fitness function of the objective function of QPSO-FLSM algorithm is optimized by 10% in comparison to the original FLSM algorithm. The achieved initial contours from the QPSO-FLSM algorithm are also more stable than that from the FLSM. The QPSO-FLSM resulted in improved final image segmentation.
Peerasak INTARAPAIBOON Thanaruk THEERAMUNKONG
Multi-slot information extraction, also known as frame extraction, is a task that identify several related entities simultaneously. Most researches on this task are concerned with applying IE patterns (rules) to extract related entities from unstructured documents. An important obstacle for the success in this task is unknowing where text portions containing interested information are. This problem is more complicated when involving languages with sentence boundary ambiguity, e.g. the Thai language. Applying IE rules to all reasonable text portions can degrade the effect of this obstacle, but it raises another problem that is incorrect (unwanted) extractions. This paper aims to present a method for removing these incorrect extractions. In the method, extractions are represented as intuitionistic fuzzy sets, and a similarity measure for IFSs is used to calculate distance between IFS of an unclassified extraction and that of each already-classified extraction. The concept of k nearest neighbor is adopted to design whether the unclassified extraction is correct or not. From the experiment on various domains, the proposed technique improves extraction precision while satisfactorily preserving recall.
This paper focuses mainly on issues related to the pricing of American options under a fuzzy environment by taking into account the clustering of the underlying asset price volatility, leverage effect and stochastic jumps. By treating the volatility as a parabolic fuzzy number, we constructed a Levy-GJR-GARCH model based on an infinite pure jump process and combined the model with fuzzy simulation technology to perform numerical simulations based on the least squares Monte Carlo approach and the fuzzy binomial tree method. An empirical study was performed using American put option data from the Standard & Poor's 100 index. The findings are as follows: under a fuzzy environment, the result of the option valuation is more precise than the result under a clear environment, pricing simulations of short-term options have higher precision than those of medium- and long-term options, the least squares Monte Carlo approach yields more accurate valuation than the fuzzy binomial tree method, and the simulation effects of different Levy processes indicate that the NIG and CGMY models are superior to the VG model. Moreover, the option price increases as the time to expiration of options is extended and the exercise price increases, the membership function curve is asymmetric with an inclined left tendency, and the fuzzy interval narrows as the level set α and the exponent of membership function n increase. In addition, the results demonstrate that the quasi-random number and Brownian Bridge approaches can improve the convergence speed of the least squares Monte Carlo approach.
Takashi WATANABE Takumi TADANO
Rehabilitation training with pedaling wheelchair in combination with functional electrical stimulation (FES) can be effective for decreasing the risk of falling significantly. Automatic adjustment of cycling speed and making a turn without standstill has been desired for practical applications of the training with mobile FES cycling. This study aimed at developing closed-loop control system of cycling speed with the pedaling wheelchair. Considering clinical practical use with no requirement of extensive modifications of the wheelchair, measurement method of cycling speed with inertial motion measurement units (IMUs) was introduced, and fuzzy controller for adjusting stimulation intensity to regulate cycling speed was designed. The developed prototype of closed-loop FES control system achieved appropriately cycling speed for the different target speeds in most of control trials with neurologically intact subjects. In addition, all the control trials of low speed cycling including U-turn achieved maintaining the target speed without standstill. Cycling distance and cycling time increased with the closed-loop control of low cycling speed compensating decreasing of cycling speed caused by muscle fatigue. From these results, the developed closed-loop fuzzy FES control system was suggested to work reliably in mobile FES cycling.
Wireless Sensor Networks (WSNs) are randomly deployed in a hostile environment and left unattended. These networks are composed of small auto mouse sensor devices which can monitor target information and send it to the Base Station (BS) for action. The sensor nodes can easily be compromised by an adversary and the compromised nodes can be used to inject false vote or false report attacks. To counter these two kinds of attacks, the Probabilistic Voting-based Filtering Scheme (PVFS) was proposed by Li and Wu, which consists of three phases; 1) Key Initialization and assignment, 2) Report generation, and 3) En-route filtering. This scheme can be a successful countermeasure against these attacks, however, when one or more nodes are compromised, the re-distribution of keys is not handled. Therefore, after a sensor node or Cluster Head (CH) is compromised, the detection power and effectiveness of PVFS is reduced. This also results in adverse effects on the sensor network's lifetime. In this paper, we propose a Fuzzy Rule-based Key Redistribution Method (FRKM) to address the limitations of the PVFS. The experimental results confirm the effectiveness of the proposed method by improving the detection power by up to 13.75% when the key-redistribution period is not fixed. Moreover, the proposed method achieves an energy improvement of up to 9.2% over PVFS.
Xueqin ZHENG Xiaoxiong CHEN Tung-Chin PAN
This paper aims to improve the ability of low voltage ride through (LVRT) of doubly-fed induction generation (DFIG) under the asymmetric grid fault. The traditional rotor of the Crowbar device requires a large reactive support during the period of protection, which causes large fluctuations to the reactive power of the output grid while cut in and off for Crowbar. This case would influence the quality and efficiency of entire power system. In order to solve the fluctuation of reactive power and the stability of the wind power system, this paper proposes the coordinated control of the fuzzy-neural D-STATCOM and the rotor of the Crowbar. The simulation results show that the system has the performance of the rotor current with faster decay and faster dynamic response, high steady-state characteristic during the grid fault, which improve the ability of LVRT of DFIG.
Mohammad Abdul AZIM Babar SHAH Beom-Su KIM Kyong Hoon KIM Ki-Il KIM
Delay Tolerant Networks (DTN) protocols based on the store-and-carry principle offer useful functions such as forwarding, utility value, social networks, and network coding. Although many DTN protocol proposals have been offered, work continues to improve performance. In order to implement DTN functions, each protocol introduces multiple parameters; their performance is largely dependent on how the parameter values are set. In this paper, we focus on improving spray and wait (S&W) by proposing a communication protocol named a Spray and AHP-GRA-based Forwarding (S&AGF) and Spray and Fuzzy based Forwarding (S&FF) scheme for DTN. The proposed protocols include a new forwarding scheme intended to extend network lifetime as well as maintain acceptable delivery ratio by addressing a deficiency in existing schemes that do not take energy into consideration. We choose the most suitable relay node by taking the energy, mobility, measured parameters of nodes into account. The simulation-based comparison demonstrates that the proposed S&AGF and S&FF schemes show better balanced performance level in terms of both delivery ratio and network lifetime than original S&W and its variants.
Takashi WATANABE Takumi TADANO
Fuzzy controller can be useful to realize a practical closed-loop FES controller, because it is possible to make it easy to design FES controller and to determine its parameter values, especially for controlling multi-joint movements by stimulating many muscles including antagonistic muscle pairs. This study focused on using fuzzy controller for the closed-loop control of cycling speed during FES cycling with pedaling wheelchair. However, a designed fuzzy controller has to be tested experimentally in control performance. In this paper, a closed-loop fuzzy FES controller was designed and tested in knee extension movements comparing to a PID controller with healthy subjects before applying to FES cycling. The developed fuzzy controller showed good control performance as a whole in comparing to PID controller and its parameter values were determined through simple control tests of the target movement.
Joobeom YUN Junbeom HUR Youngjoo SHIN Dongyoung KOO
Ransomware becomes more and more threatening nowadays. In this paper, we propose CLDSafe, a novel and efficient file backup system against ransomware. It keeps shadow copies of files and provides secure restoration using cloud storage when a computer is infected by ransomware. After our system measures file similarities between a new file on the client and an old file on the server, the old file on the server is backed up securely when the new file is changed substantially. And then, only authenticated users can restore the backup files by using challenge-response mechanism. As a result, our proposed solution will be helpful in recovering systems from ransomware damage.
Zhiqiang HU Dongju LI Tsuyoshi ISSHIKI Hiroaki KUNIEDA
Narrow swipe sensor has been widely used in embedded systems such as smart-phone. However, the size of captured image is much smaller than that obtained by the traditional area sensor. Therefore, the limited template coverage is the performance bottleneck of such kind of systems. Aiming to increase the geometry coverage of templates, a novel fingerprint template feature synthesis scheme is proposed in the present study. This method could synthesis multiple input fingerprints into a wider template by clustering the minutiae descriptors. The proposed method consists of two modules. Firstly, a user behavior-based Registration Pattern Inspection (RPI) algorithm is proposed to select the qualified candidates. Secondly, an iterative clustering algorithm Modified Fuzzy C-Means (MFCM) is proposed to process the large amount of minutiae descriptors and then generate the final template. Experiments conducted over swipe fingerprint database validate that this innovative method gives rise to significant improvements in reducing FRR (False Reject Rate) and EER (Equal Error Rate).
Qing WU Leyou ZHANG Jingxia ZHANG
Fuzzy techniques can implement the fine-grained access control of encrypted data in the Cloud because they support error-tolerance. In this system, using biometric attributes such as fingerprints, faces and irises as pubic parameters is advantageous over those systems based on Public Key Infrastructure (PKI). This is because biometric information is unique, unforgettable and non-transferable. However the biometric-attribute measurements are noisy and most of the existing encryption systems can not support the biometric-attribute encryption. Additionally, the previous fuzzy encryption schemes only achieve the selective security which is a weak security model. To overcome these drawbacks, we propose a new fuzzy encryption scheme based on the lattice in this letter. The proposed scheme is based on a hierarchical identity-based encryption with fixed-dimensional private keys space and thus has short public parameters and short private keys, which results in high computation efficiency. Furthermore, it achieves the strong security, i.e., adaptive security. Lastly, the security is reduced to the learning with errors (LWE) problem in the standard model.
Oussama DERBEL René LANDRY, Jr.
Driver behavior assessment is a hard task since it involves distinctive interconnected factors of different types. Especially in case of insurance applications, a trade-off between application cost and data accuracy remains a challenge. Data uncertainty and noises make smart-phone or low-cost sensor platforms unreliable. In order to deal with such problems, this paper proposes the combination between the Belief and Fuzzy theories with a two-level fusion based architecture. It enables the propagation of information errors from the lower to the higher level of fusion using the belief and/or the plausibility functions at the decision step. The new developed risk models of the Driver and Environment are based on the accident statistics analysis regarding each significant driving risk parameter. The developed Vehicle risk models are based on the longitudinal and lateral accelerations (G-G diagram) and the velocity to qualify the driving behavior in case of critical events (e.g. Zig-Zag scenario). In case of over-speed and/or accident scenario, the risk is evaluated using our new developed Fuzzy Inference System model based on the Equivalent Energy Speed (EES). The proposed approach and risk models are illustrated by two examples of driving scenarios using the CarSim vehicle simulator. Results have shown the validity of the developed risk models and the coherence with the a-priori risk assessment.