Shibo DONG Haotian LI Yifei YANG Jiatianyi YU Zhenyu LEI Shangce GAO
The multiple chaos embedded gravitational search algorithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs and local search methods to find optimal solutions. Despite the enhancements introduced in the CGSA-M algorithm compared to the original GSA, it exhibits a pronounced vulnerability to local optima, impeding its capacity to converge to a globally optimal solution. To alleviate the susceptibility of the algorithm to local optima and achieve a more balanced integration of local and global search strategies, we introduce a novel algorithm derived from CGSA-M, denoted as CGSA-H. The algorithm alters the original population structure by introducing a multi-level information exchange mechanism. This modification aims to mitigate the algorithm’s sensitivity to local optima, consequently enhancing the overall stability of the algorithm. The effectiveness of the proposed CGSA-H algorithm is validated using the IEEE CEC2017 benchmark test set, consisting of 29 functions. The results demonstrate that CGSA-H outperforms other algorithms in terms of its capability to search for global optimal solutions.
Daiki MITAMURA Mamoru SAWAHASHI Yoshihisa KISHIYAMA
This paper proposes a multiple code block transmission scheme using hierarchical modulation (HM) for a broadcast channel in the orthogonal frequency division multiplexing (OFDM) downlink. We investigate the average bit error rate (BER) performance of two-layer HM using 16 quadrature amplitude modulation (QAM) and three-layer HM using 64QAM in multipath Rayleigh fading channels. In multiple code block transmission using HM, the basic information bits are demodulated and decoded to all users within a cell that satisfy the bit error rate (BER) requirement. Hence, we investigate non-uniform QAM constellations to find one that suppresses the loss in the average BER of the basic information bits for HM to a low level compared to that using the original constellation in which only the basic information bits are transmitted while simultaneously minimizing the loss in the average BER of the secondary and tertiary information bits from the original constellations in which the information bits of the respective layers are transmitted alone. Based on the path loss equations in the Urban Macro and Rural Macro scenarios, we also investigate the maximum distance from a base station (BS) for the information bits of each layer to attain the required average received signal-to-noise power ratio (SNR) that achieves the average BER of 10-3.
Tao ZHENG Han ZHANG Baohang ZHANG Zonghui CAI Kaiyu WANG Yuki TODO Shangce GAO
Many optimisation algorithms improve the algorithm from the perspective of population structure. However, most improvement methods simply add hierarchical structure to the original population structure, which fails to fundamentally change its structure. In this paper, we propose an umbrellalike hierarchical artificial bee colony algorithm (UHABC). For the first time, a historical information layer is added to the artificial bee colony algorithm (ABC), and this information layer is allowed to interact with other layers to generate information. To verify the effectiveness of the proposed algorithm, we compare it with the original artificial bee colony algorithm and five representative meta-heuristic algorithms on the IEEE CEC2017. The experimental results and statistical analysis show that the umbrellalike mechanism effectively improves the performance of ABC.
Xiang BI Shengzhen YANG Benhong ZHANG Xing WEI
Multi-hop V2V communication is a fundamental way to realize data transmission in Vehicular Ad-hoc Networks (VANET). It has excellent potential in intelligent transportation systems and automatic vehicle driving, and positively affects the safety, reliability, and comfort of vehicles. With advantages in speed and trajectory, distribution along the route, size, etc., the urban buses have become prospective relay nodes for urban VANETs. However, it is a considerable challenge to construct stable and reliable (meeting the requirements of bandwidth, delay, and bit error rate) multi-hop routing because of the complexity of the urban road and bus line network in the communication area, as well as many unevenly distributed buses on the road, etc. Given this above, this paper proposes a new hierarchical routing algorithm based on V2V geographic topology segmentation. Urban hierarchical routing is divided into two layers. The first layer of routing is called coarse routing, which is composed of areas; the second layer of routing is called internal routing (bus routing within the area). Q-learning is used to formulate the sequence of buses that transmit information within each area. Details are as follows: Firstly, based on a city map containing road network information, the entire city is divided into small grids by physical streets. Secondly, based on an analysis of the characteristics of the adjacent grid bus lines, the grids with the same routing attributes are integrated into the same area, reducing the algorithm's computational complexity during route discovery. Then, for the calculated area set, a coarse route composed of the selected area is established by filtering out a group of areas satisfying from the source node to the destination node. Finally, the bus sequence between anchor intersections is selected within the chosen area, and a complete multi-hop route from the source node to the destination node is finally constructed. Sufficient simulations show that the proposed routing algorithm has more stable performance in terms of packet transmission rate, average end-to-end delay, routing duration, and other indicators than similar algorithms.
Yun WU Yu SHI Jieming YANG Lishan BAO Chunzhe LI
In the Artificial Intelligence for IT Operations scenarios, KPI (Key Performance Indicator) is a very important operation and maintenance monitoring indicator, and research on KPI anomaly detection has also become a hot spot in recent years. Aiming at the problems of low detection efficiency and insufficient representation learning of existing methods, this paper proposes a fast clustering-based KPI anomaly detection method HCE-DWL. This paper firstly adopts the combination of hierarchical agglomerative clustering (HAC) and deep assignment based on CNN-Embedding (CE) to perform cluster analysis (that is HCE) on KPI data, so as to improve the clustering efficiency of KPI data, and then separately the centroid of each KPI cluster and its Transformed Outlier Scores (TOS) are given weights, and finally they are put into the LightGBM model for detection (the Double Weight LightGBM model, referred to as DWL). Through comparative experimental analysis, it is proved that the algorithm can effectively improve the efficiency and accuracy of KPI anomaly detection.
Hierarchical ID-based authenticated key exchange (HID-AKE) is a cryptographic protocol to establish a common session key between parties with authentication based on their IDs with the hierarchical delegation of key generation functionality. All existing HID-AKE schemes are selective ID secure, and the only known standard model scheme relies on a non-standard assumption such as the q-type assumption. In this paper, we propose a generic construction of HID-AKE that is adaptive ID secure in the HID-eCK model (maximal-exposure-resilient security model) without random oracles. One of the concrete instantiations of our generic construction achieves the first adaptive ID secure HID-AKE scheme under the (standard) k-lin assumption in the standard model. Furthermore, it has the advantage that the computational complexity of pairing and exponentiation operations and the communication complexity do not depend on the depth of the hierarchy. Also, the other concrete instantiation achieves the first HID-AKE scheme based on lattices (i.e., post-quantum).
Yuki MONMA Kan ARO Muneki YASUDA
In this study, Bayesian image denoising, in which the prior distribution is assumed to be a Gaussian Markov random field (GMRF), is considered. Recently, an effective algorithm for Bayesian image denoising with a standard GMRF prior has been proposed, which can help implement the overall procedure and optimize its parameters in O(n)-time, where n is the size of the image. A new GMRF-type prior, referred to as a hierarchical GMRF (HGMRF) prior, is proposed, which is obtained by applying a hierarchical Bayesian approach to the standard GMRF prior; in addition, an effective denoising algorithm based on the HGMRF prior is proposed. The proposed HGMRF method can help implement the overall procedure and optimize its parameters in O(n)-time, as well as the previous GMRF method. The restoration quality of the proposed method is found to be significantly higher than that of the previous GMRF method as well as that of a non-local means filter in several cases. Furthermore, numerical evidence implies that the proposed HGMRF prior is more suitable for the image prior than the standard GMRF prior.
Jianyong DUAN Liangcai LI Mei ZHANG Hao WANG
Personalized news recommendation is becoming increasingly important for online news platforms to help users alleviate information overload and improve news reading experience. A key problem in news recommendation is learning accurate user representations to capture their interest. However, most existing news recommendation methods usually learn user representation only from their interacted historical news, while ignoring the clustering features among users. Here we proposed a hierarchical user preference hash network to enhance the representation of users' interest. In the hash part, a series of buckets are generated based on users' historical interactions. Users with similar preferences are assigned into the same buckets automatically. We also learn representations of users from their browsed news in history part. And then, a Route Attention is adopted to combine these two parts (history vector and hash vector) and get the more informative user preference vector. As for news representation, a modified transformer with category embedding is exploited to build news semantic representation. By comparing the hierarchical hash network with multiple news recommendation methods and conducting various experiments on the Microsoft News Dataset (MIND) validate the effectiveness of our approach on news recommendation.
Weiwei XIA Zhuorui LAN Lianfeng SHEN
In this paper, we propose a hierarchical Stackelberg game based resource allocation algorithm (HGRAA) to jointly allocate the wireless and computational resources of a mobile edge computing (MEC) system. The proposed HGRAA is composed of two levels: the lower-level evolutionary game (LEG) minimizes the cost of mobile terminals (MTs), and the upper-level exact potential game (UEPG) maximizes the utility of MEC servers. At the lower-level, the MTs are divided into delay-sensitive MTs (DSMTs) and non-delay-sensitive MTs (NDSMTs) according to their different quality of service (QoS) requirements. The competition among DSMTs and NDSMTs in different service areas to share the limited available wireless and computational resources is formulated as a dynamic evolutionary game. The dynamic replicator is applied to obtain the evolutionary equilibrium so as to minimize the costs imposed on MTs. At the upper level, the exact potential game is formulated to solve the resource sharing problem among MEC servers and the resource sharing problem is transferred to nonlinear complementarity. The existence of Nash equilibrium (NE) is proved and is obtained through the Karush-Kuhn-Tucker (KKT) condition. Simulations illustrate that substantial performance improvements such as average utility and the resource utilization of MEC servers can be achieved by applying the proposed HGRAA. Moreover, the cost of MTs is significantly lower than other existing algorithms with the increasing size of input data, and the QoS requirements of different kinds of MTs are well guaranteed in terms of average delay and transmission data rate.
Chaoran ZHOU Jianping ZHAO Tai MA Xin ZHOU
In Internet applications, when users search for information, the search engines invariably return some invalid webpages that do not contain valid information. These invalid webpages interfere with the users' access to useful information, affect the efficiency of users' information query and occupy Internet resources. Accurate and fast filtering of invalid webpages can purify the Internet environment and provide convenience for netizens. This paper proposes an invalid webpage filtering model (HAIF) based on deep learning and hierarchical attention mechanism. HAIF improves the semantic and sequence information representation of webpage text by concatenating lexical-level embeddings and paragraph-level embeddings. HAIF introduces hierarchical attention mechanism to optimize the extraction of text sequence features and webpage tag features. Among them, the local-level attention layer optimizes the local information in the plain text. By concatenating the input embeddings and the feature matrix after local-level attention calculation, it enriches the representation of information. The tag-level attention layer introduces webpage structural feature information on the attention calculation of different HTML tags, so that HAIF is better applicable to the Internet resource field. In order to evaluate the effectiveness of HAIF in filtering invalid pages, we conducted various experiments. Experimental results demonstrate that, compared with other baseline models, HAIF has improved to various degrees on various evaluation criteria.
Sanghoon KANG Hanhoon PARK Jong-Il PARK
Image deformations caused by different steganographic methods are typically extremely small and highly similar, which makes their detection and identification to be a difficult task. Although recent steganalytic methods using deep learning have achieved high accuracy, they have been made to detect stego images to which specific steganographic methods have been applied. In this letter, a staganalytic method is proposed that uses hierarchical residual neural networks (ResNet), allowing detection (i.e. classification between stego and cover images) and identification of four spatial steganographic methods (i.e. LSB, PVD, WOW and S-UNIWARD). Experimental results show that using hierarchical ResNets achieves a classification rate of 79.71% in quinary classification, which is approximately 23% higher compared to using a plain convolutional neural network (CNN).
Kenichi KAWAMURA Akiyoshi INOKI Shouta NAKAYAMA Keisuke WAKAO Yasushi TAKATORI
A method is presented for increasing wireless LAN (WLAN) capacity in high-density environments with IEEE 802.11ax systems. We propose using coordinated scheduling of trigger frames based on our mobile cooperative control concept. High-density WLAN systems are managed by a management server, which gathers wireless environmental information from user equipment through cellular access. Hierarchical clustering of basic service sets is used to form synchronized clusters to reduce interference and increase throughput of high-density WLAN systems based on mobile cooperative control. This method increases uplink capacity by up to 19.4% and by up to 11.3% in total when WLAN access points are deployed close together. This control method is potentially effective for IEEE 802.11ax WLAN systems utilized as 5G mobile network components.
Chenxu WANG Yutong LU Zhiguang CHEN Junnan LI
Training deep learning (DL) is a computationally intensive process; as a result, training time can become so long that it impedes the development of DL. High performance computing clusters, especially supercomputers, are equipped with a large amount of computing resources, storage resources, and efficient interconnection ability, which can train DL networks better and faster. In this paper, we propose a method to train DL networks distributed with high efficiency. First, we propose a hierarchical synchronous Stochastic Gradient Descent (SGD) strategy, which can make full use of hardware resources and greatly increase computational efficiency. Second, we present a two-level parameter synchronization scheme which can reduce communication overhead by transmitting parameters of the first layer models in shared memory. Third, we optimize the parallel I/O by making each reader read data as continuously as possible to avoid the high overhead of discontinuous data reading. At last, we integrate the LARS algorithm into our system. The experimental results demonstrate that our approach has tremendous performance advantages relative to unoptimized methods. Compared with the native distributed strategy, our hierarchical synchronous SGD strategy (HSGD) can increase computing efficiency by about 20 times.
Yasuhiro MOCHIDA Takayuki NAKACHI Takahiro YAMAGUCHI
High frame rate (HFR) video is attracting strong interest since it is considered as a next step toward providing Ultra-High Definition video service. For instance, the Association of Radio Industries and Businesses (ARIB) standard, the latest broadcasting standard in Japan, defines a 120 fps broadcasting format. The standard stipulates temporally scalable coding and hierarchical transmission by MPEG Media Transport (MMT), in which the base layer and the enhancement layer are transmitted over different paths for flexible distribution. We have developed the first ever MMT transmitter/receiver module for 4K/120fps temporally scalable video. The module is equipped with a newly proposed encapsulation method of temporally scalable bitstreams with correct boundaries. It is also designed to be tolerant to severe network constraints, including packet loss, arrival timing offset, and delay jitter. We conducted a hierarchical transmission experiment for 4K/120fps temporally scalable video. The experiment demonstrated that the MMT module was successfully fabricated and capable of dealing with severe network constraints. Consequently, the module has excellent potential as a means to support HFR video distribution in various network situations.
Yiheng JIAN Xiao YU Zhou XU Ziyi MA
Fault prediction aims to identify whether a software module is defect-prone or not according to metrics that are mined from software projects. These metric values, also known as features, may involve irrelevance and redundancy, which hurt the performance of fault prediction models. In order to filter out irrelevant and redundant features, a Hybrid Feature Selection (abbreviated as HFS) method for software fault prediction is proposed. The proposed HFS method consists of two major stages. First, HFS groups features with hierarchical agglomerative clustering; second, HFS selects the most valuable features from each cluster to remove irrelevant and redundant ones based on two wrapper based strategies. The empirical evaluation was conducted on 11 widely-studied NASA projects, using three different classifiers with four performance metrics (precision, recall, F-measure, and AUC). Comparison with six filter-based feature selection methods demonstrates that HFS achieves higher average F-measure and AUC values. Compared with two classic wrapper feature selection methods, HFS can obtain a competitive prediction performance in terms of average AUC while significantly reducing the computation cost of the wrapper process.
We propose two secret sharing schemes realizing general access structures, which are based on unauthorized subsets. In the proposed schemes, shares are generated by Tassa's (k,n)-hierarchical threshold scheme instead of Shamir's (k,n)-threshold scheme. Consequently, the proposed schemes can reduce the number of shares distributed to each participant.
Zhixiao WANG Mengnan HOU Guan YUAN Jing HE Jingjing CUI Mingjun ZHU
Social networks often demonstrate hierarchical community structure with communities embedded in other ones. Most existing hierarchical community detection methods need one or more tunable parameters to control the resolution levels, and the obtained dendrograms, a tree describing the hierarchical community structure, are extremely complex to understand and analyze. In the paper, we propose a parameter-free hierarchical community detection method based on micro-community and minimum spanning tree. The proposed method first identifies micro-communities based on link strength between adjacent vertices, and then, it constructs minimum spanning tree by successively linking these micro-communities one by one. The hierarchical community structure of social networks can be intuitively revealed from the merging order of these micro-communities. Experimental results on synthetic and real-world networks show that our proposed method exhibits good accuracy and efficiency performance and outperforms other state-of-the-art methods. In addition, our proposed method does not require any pre-defined parameters, and the output dendrogram is simple and meaningful for understanding and analyzing the hierarchical community structure of social networks.
Zhiqiang YI Meilin HE Peng PAN Haiquan WANG
This paper analyzes the performance of various decoders in a two-user interference channel, and some improved decoders based on enhanced utilization of channel state information at the receiver side are presented. Further, new decoders, namely hierarchical constellation based decoders, are proposed. Simulations show that the improved decoders and the proposed decoders have much better performance than existing decoders. Moreover, the proposed decoders have lower decoding complexity than the traditional maximum likelihood decoder.
Qi ZHANG Hiroaki SASAKI Kazushi IKEDA
Estimation of the gradient of the logarithm of a probability density function is a versatile tool in statistical data analysis. A recent method for model-seeking clustering called the least-squares log-density gradient clustering (LSLDGC) [Sasaki et al., 2014] employs a sophisticated gradient estimator, which directly estimates the log-density gradients without going through density estimation. However, the typical implementation of LSLDGC is based on a spherical Gaussian function, which may not work well when the probability density function for data has highly correlated local structures. To cope with this problem, we propose a new gradient estimator for log-density gradients with Gaussian mixture models (GMMs). Covariance matrices in GMMs enable the new estimator to capture the highly correlated structures. Through the application of the new gradient estimator to mode-seeking clustering and hierarchical clustering, we experimentally demonstrate the usefulness of our clustering methods over existing methods.
Makoto TAKITA Masanori HIROTOMO Masakatu MORII
The network load is increasing due to the spread of content distribution services. Caching is known as a technique to reduce a peak network load by prefetching popular contents into memories of users. Coded caching is a new caching approach based on a carefully designed content placement in order to create coded multicasting opportunities. Recent works have discussed single-layer caching systems, but many networks consist of multiple layers of cache. In this paper, we discuss a coded caching problem for a hierarchical network that has a different number of layers of cache. The network has users who connect to an origin server via a mirror server and users who directly connect to the origin server. We provide lower bounds of the rates for this problem setting based on the cut-set bound. In addition, we propose three basic coded caching schemes and characterize these schemes. Also, we propose a new coded caching scheme by combining two basic schemes and provide achievable rates of the combination coded caching scheme. Finally, we show that the proposed combination scheme demonstrates a good performance by a numerical result.