Keyword Search Result

[Keyword] high frequency bands(5hit)

1-5hit
  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • Radio Propagation Prediction Method Using Point Cloud Data Based on Hybrid of Ray-Tracing and Effective Roughness Model in Urban Environments

    Minoru INOMATA  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  Motoharu SASAKI  Yasushi TAKATORI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/10
      Vol:
    E102-B No:1
      Page(s):
    51-62

    This paper proposes a radio propagation prediction method that uses point cloud data based on a hybrid of the ray-tracing (RT) method and an effective roughness (ER) model in urban environments for the fifth generation mobile communications system using high frequency bands. The proposed prediction method incorporates propagation characteristics that consider diffuse scattering from surface irregularities. The validity of the proposed method is confirmed by comparisons of measurement and prediction results gained from the proposed method and a conventional RT method based on power delay and angular profiles. From predictions based on the power delay and angular profiles, we find that the proposed method, assuming the roughness of σh=1mm, accurately predicts the propagation characteristics in the 20GHz band for urban line-of-sight environments. The prediction error for the delay spread is 2.1ns to 9.7ns in an urban environment.

  • Frequency Dependency of Path Loss Between Different Floors in An Indoor Office Environment at UHF and SHF Bands

    Motoharu SASAKI  Minoru INOMATA  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Propagation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    373-382

    This paper describes analytical results obtained for floor penetration loss characteristics and their frequency dependency by measurements in multiple frequency bands, including those above 6GHz, in an indoor office environment. Measurement and analysis results confirm that the floor penetration loss depends on two dominant components: the transmission path through floors, and the path traveling through the outside building. We also clarify that these dominant paths have different path loss characteristics and frequency dependency. The transmission path through floors rapidly attenuates with large inter-floor offsets and in high frequency bands. On the other hand, the path traveling through outside of the building attenuates monotonically as the frequency increases. Therefore, the transmission path is dominant at short inter-floor offsets and low frequencies, and the path traveling through the outside is dominant at high number of floors or high frequency. Finally, we clarify that the floor penetration loss depends on the frequency dependency of the dominant path on the basis of the path loss characteristics of each dominant path.

  • Path Loss Model for Outdoor-to-Indoor Corridor Up to 40GHz Band in Microcell Environments

    Minoru INOMATA  Motoharu SASAKI  Wataru YAMADA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Nobutaka OMAKI  Koshiro KITAO  Tetsuro IMAI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    242-251

    This paper proposed that a path loss model for outdoor-to-indoor corridor is presented to construct next generation mobile communication systems. The proposed model covers the frequency range of millimeter wave bands up to 40GHz and provides three dimensional incident angle characteristics. Analysis of path loss characteristics is conducted by ray tracing. We clarify that the paths reflected multiple times between the external walls of buildings and then diffracted into one of the buildings are dominant. Moreover, we also clarify how the paths affect the path loss dependence on frequency and three dimensional incident angle. Therefore, by taking these dependencies into consideration, the proposed model decreases the root mean square errors of prediction results to within about 2 to 6dB in bands up to 40GHz.

  • Model for Estimating Effects of Human Body Shadowing in High Frequency Bands

    Ngochao TRAN  Tetsuro IMAI  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E98-B No:5
      Page(s):
    773-782

    In this paper, we propose a simple model for estimating the effects of human body shadowing (HBS) in high frequency bands. The model includes two factors: the shadowing width (SW), which is the width of the area with shadowing loss values greater than 0dB, and the median shadowing loss value (MSLV), which is obtained by taking the median of the shadowing loss values within the SW. These factors are determined by formulas using parameters, i.e. frequency, distance between the base station (BS) and human body, distance between the terminal and human body, BS antenna height, and direction of the human body. To obtain the formulas, a method for calculating the effects of HBS based on the uniform theory of diffraction (UTD) and a human body model comprising lossy dielectric flat plates is proposed and verified. Then, the general forms of the formulas are predicted using the theory of knife-edge diffraction (KE). A series of computer simulations using the proposed calculation method with random changes in parameters is conducted to verify the general formulas and derive coefficients for these formulas through regression formulas.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.