Keyword Search Result

[Keyword] image(1441hit)

221-240hit(1441hit)

  • A 1024-QAM Capable WLAN Receiver with -56.3dB Image Rejection Ratio Using Self-Calibration Technique

    Shusuke KAWAI  Toshiyuki YAMAGISHI  Yosuke HAGIWARA  Shigehito SAIGUSA  Ichiro SETO  Shoji OTAKA  Shuichi ITO  

     
    PAPER

      Vol:
    E101-C No:7
      Page(s):
    457-463

    This paper presents a 1024-QAM OFDM signal capable WLAN receiver in 65nm CMOS technology. Thermal noise-based IQ frequency-independent mismatch correction and IQ frequency-dependent mismatch correction with baseband loopback are proposed for the self-calibration in the receiver. The measured image rejection ratio of the self-calibration is -56.3dB. The receiver achieves the extremely low EVM of -37.1dB even with wide channel bandwidth of 80MHz and has the ability to receive the 1024-QAM signal. The result indicates that the receiver is extendable for the 802.11ax compliant receiver that supports a higher density modulation scheme of MIMO.

  • MAP-MRF Estimation Based Weather Radar Visualization

    Suk-Hwan LEE  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/04/10
      Vol:
    E101-D No:7
      Page(s):
    1924-1932

    Real-time weather radar imaging technology is required for generating short-time weather forecasts. Moreover, such technology plays an important role in critical-weather warning systems that are based on vast Doppler weather radar data. In this study, we propose a weather radar imaging method that uses multi-layer contour detection and segmentation based on MAP-MRF estimation. The proposed method consists of three major steps. The first step involves generating reflectivity and velocity data using the Doppler radar in the form of raw data images of sweep unit in the polar coordinate system. Then, contour lines are detected on multi-layers using the adaptive median filter and modified Canny's detector based on curvature consistency. The second step interpolates contours on the Cartesian coordinate system using 3D scattered data interpolation and then segments the contours based on MAP-MRF prediction and the metropolis algorithm for each layer. The final step involves integrating the segmented contour layers and generating PPI images in sweep units. Experimental results show that the proposed method produces a visually improved PPI image in 45% of the time as compared to that for conventional methods.

  • Image Denoising Using Block-Rotation-Based SVD Filtering in Wavelet Domain

    Min WANG  Shudao ZHOU  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1621-1628

    This paper proposes an image denoising method using singular value decomposition (SVD) with block-rotation-based operations in wavelet domain. First, we decompose a noisy image to some sub-blocks, and use the single-level discrete 2-D wavelet transform to decompose each sub-block into the low-frequency image part and the high-frequency parts. Then, we use SVD and rotation-based SVD with the rank-1 approximation to filter the noise of the different high-frequency parts, and get the denoised sub-blocks. Finally, we reconstruct the sub-block from the low-frequency part and the filtered the high-frequency parts by the inverse wavelet transform, and reorganize each denoised sub-blocks to obtain the final denoised image. Experiments show the effectiveness of this method, compared with relevant methods.

  • Block-Adaptive Selection of Recursive and Non-Recursive Type Intra Prediction Modes for Image Coding

    Yuta ISHIDA  Yusuke KAMEDA  Tomokazu ISHIKAWA  Ichiro MATSUDA  Susumu ITOH  

     
    LETTER-Image

      Vol:
    E101-A No:6
      Page(s):
    992-996

    This paper proposes a lossy image coding method for still images. In this method, recursive and non-recursive type intra prediction techniques are adaptively selected on a block-by-block basis. The recursive-type intra prediction technique applies a linear predictor to each pel within a prediction block in a recursive manner, and thus typically produces smooth image values. In this paper, the non-recursive type intra prediction technique is extended from the angular prediction technique adopted in the H.265/HEVC video coding standard to enable interpolative prediction to the maximum possible extent. The experimental results indicate that the proposed method achieves better coding performance than the conventional method that only uses the recursive-type prediction technique.

  • Estimating the Quality of Fractal Compressed Images Using Lacunarity

    Megumi TAKEZAWA  Hirofumi SANADA  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER

      Vol:
    E101-A No:6
      Page(s):
    900-903

    In this paper, we propose a highly accurate method for estimating the quality of images compressed using fractal image compression. Using an iterated function system, fractal image compression compresses images by exploiting their self-similarity, thereby achieving high levels of performance; however, we cannot always use fractal image compression as a standard compression technique because some compressed images are of low quality. Generally, sufficient time is required for encoding and decoding an image before it can be determined whether the compressed image is of low quality or not. Therefore, in our previous study, we proposed a method to estimate the quality of images compressed using fractal image compression. Our previous method estimated the quality using image features of a given image without actually encoding and decoding the image, thereby providing an estimate rather quickly; however, estimation accuracy was not entirely sufficient. Therefore, in this paper, we extend our previously proposed method for improving estimation accuracy. Our improved method adopts a new image feature, namely lacunarity. Results of simulation showed that the proposed method achieves higher levels of accuracy than those of our previous method.

  • Extreme Learning Machine with Superpixel-Guided Composite Kernels for SAR Image Classification

    Dongdong GUAN  Xiaoan TANG  Li WANG  Junda ZHANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1703-1706

    Synthetic aperture radar (SAR) image classification is a popular yet challenging research topic in the field of SAR image interpretation. This paper presents a new classification method based on extreme learning machine (ELM) and the superpixel-guided composite kernels (SGCK). By introducing the generalized likelihood ratio (GLR) similarity, a modified simple linear iterative clustering (SLIC) algorithm is firstly developed to generate superpixel for SAR image. Instead of using a fixed-size region, the shape-adaptive superpixel is used to exploit the spatial information, which is effective to classify the pixels in the detailed and near-edge regions. Following the framework of composite kernels, the SGCK is constructed base on the spatial information and backscatter intensity information. Finally, the SGCK is incorporated an ELM classifier. Experimental results on both simulated SAR image and real SAR image demonstrate that the proposed framework is superior to some traditional classification methods.

  • Linear-Time Algorithm in Bayesian Image Denoising based on Gaussian Markov Random Field

    Muneki YASUDA  Junpei WATANABE  Shun KATAOKA  Kazuyuki TANAKA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/02
      Vol:
    E101-D No:6
      Page(s):
    1629-1639

    In this paper, we consider Bayesian image denoising based on a Gaussian Markov random field (GMRF) model, for which we propose an new algorithm. Our method can solve Bayesian image denoising problems, including hyperparameter estimation, in O(n)-time, where n is the number of pixels in a given image. From the perspective of the order of the computational time, this is a state-of-the-art algorithm for the present problem setting. Moreover, the results of our numerical experiments we show our method is in fact effective in practice.

  • Pixel Selection and Intensity Directed Symmetry for High Frame Rate and Ultra-Low Delay Matching System

    Tingting HU  Takeshi IKENAGA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1260-1269

    High frame rate and ultra-low delay matching system plays an increasingly important role in human-machine interactive applications which call for higher frame rate and lower delay for a better experience. The large amount of processing data and the complex computation in a local feature based matching system, make it difficult to achieve a high process speed and ultra-low delay matching with limited resource. Aiming at a matching system with the process speed of more than 1000 fps and with the delay of less than 1 ms/frame, this paper puts forward a local binary feature based matching system with field-programmable gate array (FPGA). Pixel selection based 4-1-4 parallel matching and intensity directed symmetry are proposed for the implementation of this system. To design a basic framework with the high process speed and ultra-low delay using limited resource, pixel selection based 4-1-4 parallel matching is proposed, which makes it possible to use only one-thread resource consumption to achieve a four-thread processing. Assumes that the orientation of the keypoint will bisect the patch best and will point to the region with high intensity, intensity directed symmetry is proposed to calculate the keypoint orientation in a hardware friendly way, which is an important part for a rotation-robust matching system. Software experiment result shows that the proposed keypoint orientation calculation method achieves almost the same performance with the state-of-art intensity centroid orientation calculation method in a matching system. Hardware experiment result shows that the designed image process core supports to process VGA (640×480) videos at a process speed of 1306 fps and with a delay of 0.8083 ms/frame.

  • Real-Time Color Image Improvement System for Visual Testing of Nuclear Reactors

    Naoki HOSOYA  Atsushi MIYAMOTO  Junichiro NAGANUMA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1243-1250

    Nuclear power plants require in-vessel inspections for soundness checks and preventive maintenance. One inspection procedure is visual testing (VT), which is based on video images of an underwater camera in a nuclear reactor. However, a lot of noise is superimposed on VT images due to radiation exposure. We propose a technique for improving the quality of those images by image processing that reduces radiation noise and enhances signals. Real-time video processing was achieved by applying the proposed technique with a parallel processing unit. Improving the clarity of VT images will lead to reducing the burden on inspectors.

  • Novel Defogging Algorithm Based on the Joint Use of Saturation and Color Attenuation Prior

    Chen QU  Duyan BI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/01/30
      Vol:
    E101-D No:5
      Page(s):
    1421-1429

    Focusing on the defects of famous defogging algorithms for fog images based on the atmosphere scattering model, we find that it is necessary to obtain accurate transmission map that can reflect the real depths both in large depth and close range. And it is hard to tackle this with just one prior because of the differences between the large depth and close range in foggy images. Hence, we propose a novel prior that simplifies the solution of transmission map by transferring coefficient, called saturation prior. Then, under the Random Walk model, we constrain the transferring coefficient with the color attenuation prior that can obtain good transmission map in large depth regions. More importantly, we design a regularization weight to balance the influences of saturation prior and color attenuation prior to the transferring coefficient. Experimental results demonstrate that the proposed defogging method outperforms the state-of-art image defogging methods based on single prior in terms of details restoring and color preserving.

  • Accelerating Existing Non-Blind Image Deblurring Techniques through a Strap-On Limited-Memory Switched Broyden Method

    Ichraf LAHOULI  Robby HAELTERMAN  Joris DEGROOTE  Michal SHIMONI  Geert DE CUBBER  Rabah ATTIA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1288-1295

    Video surveillance from airborne platforms can suffer from many sources of blur, like vibration, low-end optics, uneven lighting conditions, etc. Many different algorithms have been developed in the past that aim to recover the deblurred image but often incur substantial CPU-time, which is not always available on-board. This paper shows how a “strap-on” quasi-Newton method can accelerate the convergence of existing iterative methods with little extra overhead while keeping the performance of the original algorithm, thus paving the way for (near) real-time applications using on-board processing.

  • Image-Based Food Calorie Estimation Using Recipe Information

    Takumi EGE  Keiji YANAI  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1333-1341

    Recently, mobile applications for recording everyday meals draw much attention for self dietary. However, most of the applications return food calorie values simply associated with the estimated food categories, or need for users to indicate the rough amount of foods manually. In fact, it has not been achieved to estimate food calorie from a food photo with practical accuracy, and it remains an unsolved problem. Then, in this paper, we propose estimating food calorie from a food photo by simultaneous learning of food calories, categories, ingredients and cooking directions using deep learning. Since there exists a strong correlation between food calories and food categories, ingredients and cooking directions information in general, we expect that simultaneous training of them brings performance boosting compared to independent single training. To this end, we use a multi-task CNN. In addition, in this research, we construct two kinds of datasets that is a dataset of calorie-annotated recipe collected from Japanese recipe sites on the Web and a dataset collected from an American recipe site. In the experiments, we trained both multi-task and single-task CNNs, and compared them. As a result, a multi-task CNN achieved the better performance on both food category estimation and food calorie estimation than single-task CNNs. For the Japanese recipe dataset, by introducing a multi-task CNN, 0.039 were improved on the correlation coefficient, while for the American recipe dataset, 0.090 were raised compared to the result by the single-task CNN. In addition, we showed that the proposed multi-task CNN based method outperformed search-based methods proposed before.

  • Approximate-DCT-Derived Measurement Matrices with Row-Operation-Based Measurement Compression and its VLSI Architecture for Compressed Sensing

    Jianbin ZHOU  Dajiang ZHOU  Takeshi YOSHIMURA  Satoshi GOTO  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    263-272

    Compressed Sensing based CMOS image sensor (CS-CIS) is a new generation of CMOS image sensor that significantly reduces the power consumption. For CS-CIS, the image quality and data volume of output are two important issues to concern. In this paper, we first proposed an algorithm to generate a series of deterministic and ternary matrices, which improves the image quality, reduces the data volume and are compatible with CS-CIS. Proposed matrices are derived from the approximate DCT and trimmed in 2D-zigzag order, thus preserving the energy compaction property as DCT does. Moreover, we proposed matrix row operations adaptive to the proposed matrix to further compress data (measurements) without any image quality loss. At last, a low-cost VLSI architecture of measurements compression with proposed matrix row operations is implemented. Experiment results show our proposed matrix significantly improve the coding efficiency by BD-PSNR increase of 4.2 dB, comparing with the random binary matrix used in the-state-of-art CS-CIS. The proposed matrix row operations for measurement compression further increases the coding efficiency by 0.24 dB BD-PSNR (4.8% BD-rate reduction). The VLSI architecture is only 4.3 K gates in area and 0.3 mW in power consumption.

  • Color Image Enhancement Method with Variable Emphasis Degree

    Hiromu ENDO  Akira TAGUCHI  

     
    PAPER-Image

      Vol:
    E101-A No:4
      Page(s):
    713-722

    In this paper, we propose a new enhancement method for color images. In color image processing, hue preserving is required. The proposed method is performed into HSI color space whose gamut is same as RGB color space. The differential gray-level histogram equalization (DHE) is effective for gray scale images. The proposed method is an extension version of the DHE for color images, and furthermore, the enhancement degree is variable by introducing two parameters. Since our processing method is applied to not only intensity but also saturation, the contrast and the colorfulness of the output image can be varied. It is an important issue how to determine the two parameters. Thus, we give the guideline for how to decide the two parameters. By using the guideline, users can easily obtain their own enhancement images.

  • A Mixture Model for Image Boundary Detection Fusion

    Yinghui ZHANG  Hongjun WANG  Hengxue ZHOU  Ping DENG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1159-1166

    Image boundary detection or image segmentation is an important step in image analysis. However, choosing appropriate parameters for boundary detection algorithms is necessary to achieve good boundary detection results. Image boundary detection fusion with unsupervised parameters can output a final consensus boundary, which is generally better than using unsupervised or supervised image boundary detection algorithms. In this study, we theoretically examine why image boundary detection fusion can work well and we propose a mixture model for image boundary detection fusion (MMIBDF) to achieve good consensus segmentation in an unsupervised manner. All of the segmentation algorithms are treated as new features and the segmentation results obtained by the algorithms are the values of the new features. The MMIBDF is designed to sample the boundary according to a discrete distribution. We present an inference method for MMIBDF and describe the corresponding algorithm in detail. Extensive empirical results demonstrate that MMIBDF significantly outperforms other image boundary detection fusion algorithms and the base image boundary detection algorithms according to most performance indices.

  • Deep Attention Residual Hashing

    Yang LI  Zhuang MIAO  Ming HE  Yafei ZHANG  Hang LI  

     
    LETTER-Image

      Vol:
    E101-A No:3
      Page(s):
    654-657

    How to represent images into highly compact binary codes is a critical issue in many computer vision tasks. Existing deep hashing methods typically focus on designing loss function by using pairwise or triplet labels. However, these methods ignore the attention mechanism in the human visual system. In this letter, we propose a novel Deep Attention Residual Hashing (DARH) method, which directly learns hash codes based on a simple pointwise classification loss function. Compared to previous methods, our method does not need to generate all possible pairwise or triplet labels from the training dataset. Specifically, we develop a new type of attention layer which can learn human eye fixation and significantly improves the representation ability of hash codes. In addition, we embedded the attention layer into the residual network to simultaneously learn discriminative image features and hash codes in an end-to-end manner. Extensive experiments on standard benchmarks demonstrate that our method preserves the instance-level similarity and outperforms state-of-the-art deep hashing methods in the image retrieval application.

  • A Color Restoration Method for Irreversible Thermal Paint Based on Atmospheric Scattering Model

    Zhan WANG  Ping-an DU  Jian LIU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/12/08
      Vol:
    E101-D No:3
      Page(s):
    826-829

    Irreversible thermal paints or temperature sensitive paints are a kind of special temperature sensor which can indicate the temperature grad by judging the color change and is widely used for off-line temperature measurement during aero engine test. Unfortunately, the hot gases flow within the engine during measuring always make the paint color degraded, which means a serious saturation reduction and contrast loss of the paint colors. This phenomenon makes it more difficult to interpret the thermal paint test results. Present contrast enhancement algorithms can significantly increase the image contrast but can't protect the hue feature of the paint images effectively, which always cause color shift. In this paper, we propose a color restoration method for thermal paint image. This method utilizes the atmospheric scattering model to restore the lost contrast and saturation information, so that the hue can be protected and the temperature can be precisely interpreted based on the image.

  • Deep Relational Model: A Joint Probabilistic Model with a Hierarchical Structure for Bidirectional Estimation of Image and Labels

    Toru NAKASHIKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/10/25
      Vol:
    E101-D No:2
      Page(s):
    428-436

    Two different types of representations, such as an image and its manually-assigned corresponding labels, generally have complex and strong relationships to each other. In this paper, we represent such deep relationships between two different types of visible variables using an energy-based probabilistic model, called a deep relational model (DRM) to improve the prediction accuracies. A DRM stacks several layers from one visible layer on to another visible layer, sandwiching several hidden layers between them. As with restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs), all connections (weights) between two adjacent layers are undirected. During maximum likelihood (ML) -based training, the network attempts to capture the latent complex relationships between two visible variables with its deep architecture. Unlike deep neural networks (DNNs), 1) the DRM is a totally generative model and 2) allows us to generate one visible variables given the other, and 2) the parameters can be optimized in a probabilistic manner. The DRM can be also fine-tuned using DNNs, like deep belief nets (DBNs) or DBMs pre-training. This paper presents experiments conduced to evaluate the performance of a DRM in image recognition and generation tasks using the MNIST data set. In the image recognition experiments, we observed that the DRM outperformed DNNs even without fine-tuning. In the image generation experiments, we obtained much more realistic images generated from the DRM more than those from the other generative models.

  • A RGB-Guided Low-Rank Method for Compressive Hyperspectral Image Reconstruction

    Limin CHEN  Jing XU  Peter Xiaoping LIU  Hui YU  

     
    PAPER-Image

      Vol:
    E101-A No:2
      Page(s):
    481-487

    Compressive spectral imaging (CSI) systems capture the 3D spatiospectral data by measuring the 2D compressed focal plane array (FPA) coded projection with the help of reconstruction algorithms exploiting the sparsity of signals. However, the contradiction between the multi-dimension of the scenes and the limited dimension of the sensors has limited improvement of recovery performance. In order to solve the problem, a novel CSI system based on a coded aperture snapshot spectral imager, RGB-CASSI, is proposed, which has two branches, one for CASSI, another for RGB images. In addition, considering that conventional reconstruction algorithms lead to oversmoothing, a RGB-guided low-rank (RGBLR) method for compressive hyperspectral image reconstruction based on compressed sensing and coded aperture spectral imaging system is presented, in which the available additional RGB information is used to guide the reconstruction and a low-rank regularization for compressive sensing and a non-convex surrogate of the rank is also used instead of nuclear norm for seeking a preferable solution. Experiments show that the proposed algorithm performs better in both PSNR and subjective effects compared with other state-of-art methods.

  • A Describing Method of an Image Processing Software in C for a High-Level Synthesis Considering a Function Chaining

    Akira YAMAWAKI  Seiichi SERIKAWA  

     
    PAPER-Design Methodology and Platform

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    324-334

    This paper shows a describing method of an image processing software in C for high-level synthesis (HLS) technology considering function chaining to realize an efficient hardware. A sophisticated image processing would be built on the sequence of several primitives represented as sub-functions like the gray scaling, filtering, binarization, thinning, and so on. Conventionally, generic describing methods for each sub-function so that HLS technology can generate an efficient hardware module have been shown. However, few studies have focused on a systematic describing method of the single top function consisting of the sub-functions chained. According to the proposed method, any number of sub-functions can be chained, maintaining the pipeline structure. Thus, the image processing can achieve the near ideal performance of 1 pixel per clock even when the processing chain is long. In addition, implicitly, the deadlock due to the mismatch of the number of pushes and pops on the FIFO connecting the functions is eliminated and the interpolation of the border pixels is done. The case study on a canny edge detection including the chain of some sub-functions demonstrates that our proposal can easily realize the expected hardware mentioned above. The experimental results on ZYNQ FPGA show that our proposal can be converted to the pipelined hardware with moderate size and achieve the performance gain of more than 70 times compared to the software execution. Moreover, the reconstructed C software program following our proposed method shows the small performance degradation of 8% compared with the pure C software through a comparative evaluation preformed on the Cortex A9 embedded processor in ZYNQ FPGA. This fact indicates that a unified image processing library using HLS software which can be executed on CPU or hardware module for HW/SW co-design can be established by using our proposed describing method.

221-240hit(1441hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.