1-8hit |
An f0/2f0 (frequency ratio of two) microstrip diplexer with simple circuit configuration as well as low and wideband insertion-loss characteristics is proposed. It is a parallel combination of a coupled line for f0 port and a wave-trap circuit composed of a transmission line and an open stub for 2f0 port. All the lines and stub have a quarter-wave length for f0. Matching circuits are not needed. Circuit and electro-magnetic simulation results prove that the proposed f0/2f0 diplexer exhibits well-balanced properties of insertion loss (IL), IL bandwidth, and isolation, as compared to conventional simple f0/2f0 diplexers composed of two wave-trap circuits or two coupled lines. The proposed diplexer is fabricated on a resin substrate in a microstrip configuration at frequencies of f0/2f0=2.5/5 GHz. Measured results are in good agreement with simulations and support the above conclusion. The proposed diplexer exhibits ILs of 0.46/0.56 dB with 47/47% relative bandwidth (for f0/2f0), which are lower and wider than f0/2f0 diplexers in literatures at the same frequency bands.
Fumio SATO Michio YOKOYAMA Yudai USAMI Kentaro YAZAWA Takao KUKI Shizuo TOKITO
The authors have proposed a new type of flexible and printable 12GHz-band phase shifter using polymer actuator for the first time. Polymer bending actuator was used as a termination device of a reflection-type 3-dB, 90° hybrid coupler as the phase-shift control unit which controls the electrical length of the waveguide for microwave signals by the applied bias voltage. The microstrip line circuit of the device has been fabricated using low-cost screen printing method. Polymer bending actuator having three-layer stacking structure, in which an ionic liquid electrolyte layer is sandwiched with two conductive network composite layers, was formed by wet processes. The authors have confirmed that the phase shift could be controlled in analog by low driving voltages of 2-7 V for the actuator with a insertion loss of 2.73 dB. This phase shifter can be integrated with flexible patch antenna and the current flexible polymer electronics devices such as transistors.
Masatoshi TANAKA Masayoshi HACHIWAKA Hirokazu TANIGUCHI
Fan-in/fan-out devices are necessary for the construction of multi-core fiber communication systems. A fan-out device using a capillary is proposed and made by connecting a tapered fiber bundle and a multi-core fiber. The tapered fiber bundle is elongated so that the core arrangement and the mode field diameter (MFD) of single-core fibers agree with those of the multi-core fiber. Suppressing the MFD change is necessary to reduce the coupling loss of the fan-out device. While elongating the fiber bundle, the MFD decreases at the beginning until the core reaches a certain core diameter, and then it begins to increase. We suppress the MFD change of the fan-out device by using this phenomenon. The average insertion loss at both ends of a multi-core fiber was approximately 1.6dB when the fabricated fan-in/fan-out devices were connected to the multi-core fiber.
Mitsuru KIHARA Yuichi YAJIMA Hiroshi WATANABE
We experimentally investigate and analyze faults in optical fiber connections with refractive index matching material that have incorrectly cleaved fiber ends. We explain that incorrectly cleaved fiber ends, which are not ideal because they are uneven and not perpendicular to the fiber axis, are caused by defective optical fiber cleavers. We discover that the optical performance of field installable connections using incorrectly cleaved fiber ends might change greatly. We also infer that the significant change in insertion and return losses might be attributed to partially air-filled gaps by using scatter diagrams of measured insertion and return losses. Our experiment results reveal that the optical performance might deteriorate to more than 40dB in terms of insertion loss and less than 30dB in terms of return loss.
This paper proposes a 10 µm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500, for 1 hr at H2O/O2) and a rapid thermal oxidation (RTO) process (1050, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 µm was about 100-500 pA in the range of 0 V to 50 V. The average value of breakdown field was about 3.9 MV/cm. From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process, were confirmed to be completely oxidized. Also the role of RTO was important for the densification of the porous silicon layer (PSL), oxidized at a lower temperature. For the RF test of Si substrate, with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared at a temperature of 1050 (1 hr at H2O/O2). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz which is similar to that of CPW on OPSL prepared by high temperature oxidation.
Masaru KOBAYASHI Shin'ichi IWANO Ryo NAGASE Seiko MITACHI
Fiber physical contact (FPC) is proposed and demonstrated as a new method designed to enable fibers to be connected easily with a small structure while maintaining high optical performance. FPC is performed by mating two bare optical fibers in a micro sleeve and fixing them to a holder while they are buckled. Buckling is a phenomenon whereby a long column is bent by compression along its length. PC connection is realized by the buckling force of the fibers themselves and does not require any springs. Optical fiber buckling is studied both theoretically and experimentally. The buckling force, which is determined by an initial span between the optical fiber holding points, remains constant when the span is changed and is useful as the PC force. The buckling amplitude which is determined by the span reduction must be so small that it does not cause excess radiation loss. A suitable span is about 7 mm. This generates a 0.7 N. The allowed span reduction is 0.1 mm. This results in a buckling amplitude of 0.64 mm which prevents radiation losses of above 0.1 dB for 1.31 µm light. Based on a study of fiber buckling, we demonstrate the optical performance for FPC connection with a 0.126 mm diameter micro sleeve in which optical fibers are mated and with polished fiber end faces. The insertion loss is under 0.3 dB and the average return loss is 50 dB for 1.31 µm light. These values are stable in the 20 to 70 temperature range. We confirm that FPC connection realizes high optical performance with a small simple structure.
Masaaki TAKAYA Mitsuru KIHARA Shinji NAGASAWA
We have developed an easily-assembled optical coupling device which consists of two multifiber array connectors and a single-mode planar waveguide chip whose ends are passively positioned in novel plastic plug components compatible with the multifiber array connectors. The assembled 18 splitter device exhibits a low exess loss of 0.8 dB.
Yasuhiro ANDO Shin'ichi IWANO Kazunori KANAYAMA Ryo NAGASE
The statistical properties of insertion losses and return losses for optical connectors are investigated theoretically using the probability theory and the Monte Carlo simulation. Our investigation is focused on an orientation method for reducing insertion loss by which a fiber-core center is adjusted in a region of within a certain angle to the positioning key direction. It is demonstrated that the method can significantly improve insertion losses, and that an adjusting operation angle of 90 degrees is sufficient to realize an insertion loss of less than 0.5 dB with 99% cumulative probability. Good agreement was obtained between the theoretical distribution and the experimental results for single-mode fiber connection. Consequently, it is indicated that the statistical distributions of insertion losses and return losses of optical connectors in the field can be predicted theoretically from the values measured in the factory by connection to a master connector.