1-3hit |
Atsushi KUROKAWA Toshiki KANAMOTO Tetsuya IBE Akira KASEBE Wei Fong CHANG Tetsuro KAGE Yasuaki INOUE Hiroo MASUDA
Floating dummy metal fills inserted for planarization of multi-dielectric layers have created serious problems because of increased interconnect capacitance and the enormous number of fills. We present new dummy filling methods to reduce the interconnect capacitance and the number of dummy metal fills needed. These techniques include three ways of filling: 1) improved floating square fills, 2) floating parallel lines, and 3) floating perpendicular lines (with spacing between dummy metal fills above and below signal lines). We also present efficient formulas for estimating the appropriate spacing and number of fills. In our experiments, the capacitance increase using the conventional regular square method was 13.1%, while that using the methods of improved square fills, extended parallel lines, and perpendicular lines were 2.7%, 2.4%, and 1.0%, respectively. Moreover, the number of necessary dummy metal fills can be reduced by two orders of magnitude through use of the parallel line method.
Atsushi KUROKAWA Masanori HASHIMOTO Akira KASEBE Zhangcai HUANG Yun YANG Yasuaki INOUE Ryosuke INAGAKI Hiroo MASUDA
Simple closed-form expressions for efficiently calculating on-chip interconnect capacitances are presented. The formulas are expressed with second-order polynomial functions which do not include exponential functions. The runtime of the proposed formulas is about 2-10 times faster than those of existing formulas. The root mean square (RMS) errors of the proposed formulas are within 1.5%, 1.3%, 3.1%, and 4.6% of the results obtained by a field solver for structures with one line above a ground plane, one line between ground planes, three lines above a ground plane, and three lines between ground planes, respectively. The proposed formulas are also superior in accuracy to existing formulas.
Atsushi KUROKAWA Toshiki KANAMOTO Akira KASEBE Yasuaki INOUE Hiroo MASUDA
We present a practical method of dealing with the influences of floating dummy metal fills, which are inserted to assist planarization by chemical-mechanical polishing (CMP) process, in extracting interconnect capacitances for system-on-chip (SoC) designs. The method is based on reducing the thicknesses of dummy metal layers according to electrical field theory. We also clarify the influences of dummy metal fills on the parasitic capacitance, signal delay, and crosstalk noise. Moreover, we address that interlayer dummy metal fills have more significant influences than intralayer ones in terms of the impact on coupling capacitances. When dummy metal fills are ignored, the error of capacitance extraction can be more than 30%, whereas the error of the proposed method is less than about 10% for many practical geometries. We also demonstrate, by comparison with capacitance results measured for a 90-nm test chip, that the error of the proposed method is less than 8%.