1-8hit |
Tomonari KURAYAMA Teruyuki MIYAJIMA Yoshiki SUGITANI
Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.
Yuta KASHINO Masakuni TSUNEZAWA Naoki HONMA Kentaro NISHIMORI
In-band full-duplex (FD) Multiple-Input and Multiple-Output (MIMO) communication performs uplink and downlink transmission at the same time using the same frequency. In this system, the spectral efficiency is theoretically double that of conventional duplex schemes, such as Time Division Duplex (TDD) and Frequency Division Duplex (FDD). However, this system suffers interference because the uplink and downlink streams coexist within the same channel. Especially at the terminal side, it is quite difficult for the terminal to eliminate the interference signals from other terminals since it has no knowledge about the contents of the interference signals. This paper presents an inter-terminal interference suppression method between the uplink and downlink signals assuming the multi-user environment. This method uses eigen-beamforming at the transmitting terminal to direct the null to the other terminal. Since this beamforming technique reduces the degrees of freedom available, the interference suppression performance and transmitting data-rate have a trade-off relation. This study investigates the system capacity characteristics in multi-user full-duplex MIMO communication using the propagation channel information measured in an actual outdoor experiment and shows that the proposed communication scheme offers higher system capacity than the conventional scheme.
A novel UWB system for a new indoor short distance radio-communication is examined. Various types of UWB systems have been proposed in the literature. Particularly direct sequence (DS) systems and time hopping (TH) systems are attractive due to low power consumption and a simple transceiver construction. In this paper, we consider to apply modulated and modified Hermite pulses (MMHP) for both DS-UWB and TH-UWB systems. Furthermore, MMHP are extended to a novel pulse set referred as limited bandwidth MMHP set in order to reduce various interferences. It is composed of pseudo-orthogonal pulses that have both good auto-correlation characteristics in all orders and low cross-correlation characteristics between different orders. The proposed pulse set also have some specific notches, which can be used to reduce narrow-band interference (NBI). Additionally, we propose a novel pulse shape hopping that employs the proposed MMHP set. Multi-user interference (MUI) and inter-symbol interference (ISI) can be reduced by such a pulse shape hopping scheme for the DS or TH UWB signal format. Simulation results show significant performance improvements by using the proposed UWB system.
Hiroyuki KAWAI Shinzo OHKUBO Toru OTSU Hirohito SUDA Yasushi YAMAO
A novel interference reduction method, transmit power and window control (TPWC), is proposed to enhance the system capacity in the downlink of code division multiple access (CDMA) cellular packet systems. TPWC measures the propagation conditions and calculates the required instantaneous transmit power between a base station (BS) and a mobile station (MS). Then, TPWC sends packets only during a transmit time-window, in which the packets can be sent with less power than a predetermined threshold. TPWC reduces the average transmit power at the cost of an extra transmission delay at the BS. Computer simulations show that TPWC enhances the system capacity by two-fold in a CDMA cellular packet system when each MS has a loading ratio of 0.5 and an average delay allowance of 5 ms for the unit packet length of 1 ms. Furthermore, this paper proposes a multi-link packet transmission (MLPT) scheme in order to reduce the delay caused by TPWC. When an MS is at the cell edge, packets are distributed by MLPT to multiple BSs, from which packets are sent to the MS; thus, the transmission delay can be reduced by utilizing the transmit windows of each BS.
Blagovest SHISHKOV Jun CHENG Takashi OHIRA
The electronically steerable passive array radiator (ESPAR) antenna is one kind of the parasitic elements based single-port output antennas with several variable reactances. It performs analog aerial beamforming and none of the signals on its passive elements can be observed. This fact and one that is more important--the nonlinear dependence of the output of the antenna from adjustable reactances--makes the problem substantially new and not resolvable by means of conventional adaptive array beamforming techniques. A novel approach based on stochastic approximation theory is proposed for the adaptive beamforming of the ESPAR antenna as a nonlinear spatial filter by variable parameters, thus forming both beam and nulls. Two learning rate schedule were examined about output SINR, stability, convergence, misadjustment, noise effect, bias term, etc., and the optimal one was proposed. Further development was traced. Our theoretic study, simulation results and performance analysis show that the ESPAR antenna can be controlled effectively, has strong potential for use in mobile terminals and seems to be very perspective.
Blagovest SHISHKOV Jun CHENG Takashi OHIRA
The electronically steerable passive array radiator (ESPAR) antenna performs analog aerial beamforming that has only a single-port output and none of the signals on its passive elements can be observed. This fact and one that is more important--the highly nonlinear dependence of the output of the antenna from adjustable reactances--makes the problem substantially new and not resolvable by means of conventional adaptive array beamforming techniques. A novel approach based on stochastic approximation theory is proposed for the adaptive beamforming of the ESPAR antenna as a nonlinear spatial filter by variable parameters, thus forming both beam and nulls. Our theoretic study, simulation results and performance analysis show that the ESPAR antenna can be controlled effectively, has strong potential for use in mobile terminals and seems to be very perspective.
Jun CHENG Yukihiro KAMIYA Takashi OHIRA
Conventional adaptive array antenna processing must access signals on all of the array antenna elements. However, because the low-cost electronically steerable passive array radiator (ESPAR) antenna only has a single-port output, all of the signals on the antenna elements cannot be observed. In this paper, a technique for adaptively controlling the loaded reactances on the passive radiators, thus forming both beam and nulls, is presented for the ESPAR antenna. The adaptive algorithm is based on the steepest gradient theory, where the reactances are sequentially perturbed to determine the gradient vector. Simulations show that the ESPAR antenna can be adaptive. The statistical performance of the output SIR of the ESPAR antenna is also given.
Abbas JAMALIPOUR Masaaki KATAYAMA Takaya YAMAZATO Akira OGAWA
A new transmit permission control scheme applicable in multi-cell communication systems is proposed. In this scheme, by prohibiting the transmissions from the users with relatively high propagation loss to their connecting hub stations, level of multiple access interference is decreased, and hence throughput characteristics are improved. Moreover, we continue our discussion to propose two adaptive forms of the transmit permission control scheme, in which the prohibition condition becomes more intelligent by considering the level of the offered traffic loads to hub stations. These methods are utilized in a slotted Aloha random transmission of the spread spectrum packets, and on the uplinks of a low earth orbit satellite communication system as an example of the multi-cell systems. It is shown that the adaptive schemes exhibits significantly improved characteristics at all offered traffic loads in these systems.