1-8hit |
Shuichi NAGASAWA Masamitsu TANAKA Naoki TAKEUCHI Yuki YAMANASHI Shigeyuki MIYAJIMA Fumihiro CHINA Taiki YAMAE Koki YAMAZAKI Yuta SOMEI Naonori SEGA Yoshinao MIZUGAKI Hiroaki MYOREN Hirotaka TERAI Mutsuo HIDAKA Nobuyuki YOSHIKAWA Akira FUJIMAKI
We developed a Nb 4-layer process for fabricating superconducting integrated circuits that involves using caldera planarization to increase the flexibility and reliability of the fabrication process. We call this process the planarized high-speed standard process (PHSTP). Planarization enables us to flexibly adjust most of the Nb and SiO2 film thicknesses; we can select reduced film thicknesses to obtain larger mutual coupling depending on the application. It also reduces the risk of intra-layer shorts due to etching residues at the step-edge regions. We describe the detailed process flows of the planarization for the Josephson junction layer and the evaluation of devices fabricated with PHSTP. The results indicated no short defects or degradation in junction characteristics and good agreement between designed and measured inductances and resistances. We also developed single-flux-quantum (SFQ) and adiabatic quantum-flux-parametron (AQFP) logic cell libraries and tested circuits fabricated with PHSTP. We found that the designed circuits operated correctly. The SFQ shift-registers fabricated using PHSTP showed a high yield. Numerical simulation results indicate that the AQFP gates with increased mutual coupling by the planarized layer structure increase the maximum interconnect length between gates.
Souichiro SEO Masahiro NISHIZAWA Yuya HORII Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
We have proposed the novel optical model for layer structure film to precisely control light diffusion angle range. By introducing structure characteristics to the phase grating model, we successfully constructed the novel optical model. In addition, we clarified that difference of refractive indices of layer structure and layer width are important factors for precisely control of light diffusion angle range.
Souichiro SEO Masahiro NISHIZAWA Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
We investigated effects of ultraviolet illuminance and ratio of high- to low-refractive-index monomers on the layer structure and light diffusion properties of light-diffusing films with alternating polymer layer structures. We clarified that an increasing difference in refractive index between alternating polymer layers induced an increase in the diffusion angle.
Hee-Do KANG Il-Young OH Tong-Ho CHUNG Jong-Gwan YOOK
In this paper, penetration phenomenon of an early-time (E1) high altitude electromagnetic pulse (HEMP) into dispersive underground multilayer structures is analyzed using electromagnetic modeling of wave propagation in frequency dependent lossy media. The electromagnetic pulse is dealt with in the power spectrum ranging from 100kHz to the 100MHz band, considering the fact that the power spectrum of the E1 HEMP rapidly decreases 30dB below its maximum value beyond the 100MHz band. In addition, the propagation channel consisting of several dielectric materials is modeled with the dispersive relative permittivity of each medium. Based on source and channel models, the propagation phenomenon is analyzed in the frequency and time domains. The attenuation levels at a 100m underground point are observed to be about 15 and 20dB at 100kHz and 1MHz, respectively, and the peak level of the penetrating electric field is found 5.6kV/m. To ensure the causality of the result, we utilize the Hilbert transform.
Nagayoshi MORITA Katsuhito OHNO Hiroyuki FUKUSHIMA
An analysis method based on the FD-TD and radiation mode expansion methods and its simulation tool are developed for calculating circuit characteristics and parameter values of passive MMIC (Monolithic Microwave Integrated Circuits) elements having multilayer structure. For straight multilayer microstrip lines and coplanar waveguides, it is possible to calculate characteristic impedance, effective permittivity, transverse field distribution of guided modes, etc. For various multilayer microstrip and coplanar waveguide elements, it is possible to calculate scattering parameters, radiated power, radiation patterns, etc. As an example of application of the present technique, effects of inclusion of lower permittivity layer in the substrate on transmission and radiation characteristics are investigated for right-angled microstrip bends.
Masayuki MATSUSHITA Yoichi OKABE
We have fabricated ramp-type Josephson junctions in trilayer structures. A bilayer of YBa2Cu3O7-x (YBCO)/CeO2 was deposited on a SrTiO3 (100) substrate. Then, circle patterns with a diameter of 2 µm were etched on the bilayer surface using standard photolithography process. During the Ar ion milling with an incident angle of 45 degrees to the bilayer surface, the sample was rotated. This process led to upside-down conical formations. After the ramp-edge surface was modified, another YBCO film was deposited for the top electrode. The junctions showed the I-V characteristics between resistively shunted junction and flux-flow types.
Hitoshi TABATA Takeshi YANAGITA Tomoji KAWAI
We have constructed Bi based layer structured ferroelectric films and their superlattices by a pulsed laser deposition technique. The dielectric constants along c-axis increase with increasing of the number of pseudo-perovskite layers between double Bi2O2 layers. Ferroelectricity appears along the c-axis direction only for the odd number of the perovskite layers owing to the mirror symmetry in a crystal structure. Especially, the Bi2VO5. 5 film shows an atomically flat surface, low dielectric constant of 30 and ferroelectricity of Pr=3 µC/cm2 and Ec=16 kV/cm, respectively. This material is expected to the application for FRAMs.
Yutaka OHMORI Chikayoshi MORISHIMA Akihiko FUJII Katsumi YOSHINO
Electrical and optical properties of organic multilayer structure have been investigated. Two types of current-voltage characteristics have been found for thin multilayer structure of organic films. Optical property and its application for electroluminescent diode have been presented. The diode characteristics have been discussed in terms of energy band scheme.