Keyword Search Result

[Keyword] physical-layer security(8hit)

1-8hit
  • On Secrecy Performance Analysis for Downlink RIS-Aided NOMA Systems

    Shu XU  Chen LIU  Hong WANG  Mujun QIAN  Jin LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/11/21
      Vol:
    E106-B No:5
      Page(s):
    402-415

    Reconfigurable intelligent surface (RIS) has the capability of boosting system performance by manipulating the wireless propagation environment. This paper investigates a downlink RIS-aided non-orthogonal multiple access (NOMA) system, where a RIS is deployed to enhance physical-layer security (PLS) in the presence of an eavesdropper. In order to improve the main link's security, the RIS is deployed between the source and the users, in which a reflecting element separation scheme is developed to aid data transmission of both the cell-center and the cell-edge users. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed RIS-aided NOMA scheme. To obtain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. Moreover, the secrecy diversity order is derived according to the asymptotic approximation in the high signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER) regime. Furthermore, based on the derived results, the power allocation coefficient and number of elements are optimized to minimize the system SOP. Simulations demonstrate that the theoretical results match well with the simulation results and the SOP of the proposed scheme is clearly less than that of the conventional orthogonal multiple access (OMA) scheme obviously.

  • Energy-Efficient Secure Transmission for Cognitive Radio Networks with SWIPT

    Ke WANG  Wei HENG  Xiang LI  Jing WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    1002-1010

    In this paper, the artificial noise (AN)-aided multiple-input single-output (MISO) cognitive radio network with simultaneous wireless information and power transfer (SWIPT) is considered, in which the cognitive user adopts the power-splitting (PS) receiver architecture to simultaneously decode information and harvest energy. To support secure communication and facilitate energy harvesting, AN is transmitted with information signal at cognitive base station (CBS). The secrecy energy efficiency (SEE) maximization problem is formulated with the constraints of secrecy rate and harvested energy requirements as well as primary user's interference requirements. However, this challenging problem is non-convex due to the fractional objective function and the coupling between the optimization variables. For tackling the challenging problem, a double-layer iterative optimization algorithm is developed. Specifically, the outer layer invokes a one-dimension search algorithm for the newly introduced tight relaxation variable, while the inner one leverages the Dinkelbach method to make the fractional optimization problem more tractable. Furthermore, closed-form expressions for the power of information signal and AN are obtained. Numerical simulations are conducted to demonstrate the efficiency of our proposed algorithm and the advantages of AN in enhancing the SEE performance.

  • Enhanced Secure Transmission for Indoor Visible Light Communications

    Sheng-Hong LIN  Jin-Yuan WANG  Ying XU  Jianxin DAI  

     
    LETTER-Information Network

      Pubricized:
    2020/02/25
      Vol:
    E103-D No:5
      Page(s):
    1181-1184

    This letter investigates the secure transmission improvement scheme for indoor visible light communications (VLC) by using the protected zone. Firstly, the system model is established. For the input signal, the non-negativity and the dimmable average optical intensity constraint are considered. Based on the system model, the secrecy capacity for VLC without considering the protected zone is obtained. After that, the protected zone is determined, and the construction of the protected zone is also provided. Finally, the secrecy capacity for VLC with the protected zone is derived. Numerical results show that the secure performance of VLC improves dramatically by employing the protected zone.

  • A Practical Secret Key Generation Scheme Based on Wireless Channel Characteristics for 5G Networks

    Qiuhua WANG  Mingyang KANG  Guohua WU  Yizhi REN  Chunhua SU  

     
    PAPER-Network Security

      Pubricized:
    2019/10/16
      Vol:
    E103-D No:2
      Page(s):
    230-238

    Secret key generation based on channel characteristics is an effective physical-layer security method for 5G wireless networks. The issues of how to ensure the high key generation rate and correlation of the secret key under active attack are needed to be addressed. In this paper, a new practical secret key generation scheme with high rate and correlation is proposed. In our proposed scheme, Alice and Bob transmit independent random sequences instead of known training sequences or probing signals; neither Alice nor Bob can decode these random sequences or estimate the channel. User's random sequences together with the channel effects are used as common random source to generate the secret key. With this solution, legitimate users are able to share secret keys with sufficient length and high security under active attack. We evaluate the proposed scheme through both analytic and simulation studies. The results show that our proposed scheme achieves high key generation rate and key security, and is suitable for 5G wireless networks with resource-constrained devices.

  • Legitimate Surveillance with a Wireless Powered Monitor in Rayleigh Fading Channels

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:1
      Page(s):
    293-297

    This letter investigates the performance of a legitimate surveillance system, where a wireless powered legitimate monitor aims to eavesdrop a suspicious communication link. Power splitting technique is adopted at the monitor for simultaneous information eavesdropping and energy harvesting. In order to maximize the successful eavesdropping probability, the power splitting ratio is optimized under the minimum harvested energy constraint. Assuming that perfect channel state information (CSI) or only the channel distribution information (CDI) is available, the closed-form maximum successful eavesdropping probability is obtained in Rayleigh fading channels. It is shown that the minimum harvested energy constraint has no impact on the eavesdropping performance if the minimum harvested energy constraint is loose. It is also shown that the eavesdropping performance loss due to partial knowledge of CSI is negligible when the eavesdropping link channel condition is much better than that of the suspicious communication link channel.

  • Analysis on Physical-Layer Security for Multi-Cell Coordination Aided Ultra-Dense Heterogeneous Networks

    Zhihao ZHONG  Jianhua PENG  Kaizhi HUANG  

     
    PAPER-Network

      Pubricized:
    2017/04/11
      Vol:
    E100-B No:10
      Page(s):
    1846-1855

    In order to satisfy the very high traffic demand in crowded hotspot areas and realize adequate security in future fifth-generation networks, this paper studies physical-layer security in the downlink of a two-tier ultra dense heterogeneous network, where a ubiquitous array formed by ultra dense deployed small-cells surrounds a macrocell base station. In this paper, the locations of legitimate users and eavesdroppers are drawn from Poisson point processes. Then, the cumulative distribution functions of the receive signal-to-interference-plus-noise ratio for legitimate users and eavesdroppers are derived. Further, the average secrecy rate and secrecy coverage probability for each tier as well as for the whole network are investigated. Finally, we analyze the influences on secrecy performance caused by eavesdropper density, transmit power allocation ratio, antenna number allocation ratio, and association area radius.

  • Subcarrier Allocation for Physical-Layer Security in Cooperative OFDMA Networks

    Chunxiao CAI  Yueming CAI  Weiwei YANG  

     
    LETTER

      Vol:
    E94-B No:12
      Page(s):
    3387-3390

    Secrecy on the physical layer is receiving increased research interest due to its theoretical and practical importance. In this letter, a subcarrier allocation scheme is proposed for physical-layer security in cooperative orthogonal frequency division multiple access (OFDMA) networks that use the Amplify-and-Forward (AF) strategy. We consider the subcarrier pairing and assignment to maximize overall system rates subject to a secrecy level requirement. Monte Carlo simulations are carried out to validate our analysis.

  • A Subcarrier-Reference Scheme for Multiuser MISO-OFDMA Systems with Low Probability of Interception

    Wenyu LUO  Liang JIN  Yingsong LI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:10
      Page(s):
    2872-2876

    Recently, Li and Xia proposed a physical-layer security design to guarantee a low probability of interception (LPI) for asynchronous cooperative systems without relying on upper-layer data encryption. The proposed scheme utilizes diagonal unitary codes to perform different encoding in the frequency domain over subcarriers within each OFDM block to randomize the transmitted signals. To build on their idea, in this letter, a subcarrier-reference (SR) transmission scheme is proposed with deliberate signal randomization to achieve LPI in multiuser MISO-OFDMA systems. For each user, one of the allocated subcarriers is chosen by the transmitter to send reference signals, and others are chosen to send the user's information symbols. By some deliberate signal randomization, the eavesdropper cannot detect the transmitted symbols, while the authorized users can operate the system successfully without knowledge of the channels by subcarrier-reference demodulation. Extensive simulations are conducted to demonstrate the scheme's effectiveness.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.