Keyword Search Result

[Keyword] pipeline ADC(4hit)

1-4hit
  • Non-binary Pipeline Analog-to-Digital Converter Based on β-Expansion

    Hao SAN  Tomonari KATO  Tsubasa MARUYAMA  Kazuyuki AIHARA  Masao HOTTA  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    415-421

    This paper proposes a pipeline analog-to-digital converter (ADC) with non-binary encoding technique based on β-expansion. By using multiply-by-β switched-capacitor (SC) multiplying digital-to-analog converter (MDAC) circuit, our proposed ADC is composed by radix-β (1 < β < 2) 1 bit pipeline stages instead of using the conventional radix-2 1.5 bit/1 bit pipeline stages to realize non-binary analog-to-digital conversion. Also with proposed β-value estimation algorithm, there is not any digital calibration technique is required in proposed pipeline ADC. The redundancy of non-binary ADC tolerates not only the non-ideality of comparator, but also the mismatch of capacitances and the gain error of operational amplifier (op-amp) in MDAC. As a result, the power hungry high gain and wide bandwidth op-amps are not necessary for high resolution ADC, so that the reliability-enhanced pipeline ADC with simple amplifiers can operate faster and with lower power. We analyse the β-expansion of AD conversion and modify the β-encoding technique for pipeline ADC. In our knowledge, this is the first proposal architecture for non-binary pipeline ADC. The reliability of the proposed ADC architecture and β-encoding technique are verified by MATLAB simulations.

  • Techniques for Digitally Assisted Pipeline A/D Converters

    Shoji KAWAHITO  

     
    INVITED PAPER

      Vol:
    E91-C No:6
      Page(s):
    829-836

    This paper reviews techniques for digitally assisted pipeline ADCs. Errors of pipeline ADCs originated by capacitor mismatch, finite amplifier gain, incomplete settling and offset can be corrected in digital-domain foreground or background calibrations. In foreground calibrations, the errors are measured by reconfiguration of the building blocks of pipeline ADC or using an INL plot without reconfiguration. In background calibrations, the errors are measured with random signal and continuously corrected while simultaneously performing the normal A/D conversions. Techniques for measuring and correcting the errors at foreground and background are reviewed and a unified approach to the description of the principle of background calibration of gain errors is presented.

  • Low-Power Design of High-Speed A/D Converters

    Shoji KAWAHITO  Kazutaka HONDA  Masanori FURUTA  Nobuhiro KAWAI  Daisuke MIYAZAKI  

     
    INVITED PAPER

      Vol:
    E88-C No:4
      Page(s):
    468-478

    In this paper, low-power design techniques of high-speed A/D converters are reviewed and discussed. Pipeline and parallel-pipeline architectures are treated as these are dominant architectures when required high sampling rate and high resolution with reasonable power dissipation. A systematic approach to the power optimization of pipeline and parallel pipeline ADC's is introduced based on models of noise analysis and response time of a building block in the multiple-stage pipeline ADC. Finally, the theoretical minimum of required power as functions of the sampling rate, resolution and SNR is discussed. The analysis shows that, with the developments of new circuits and systems to approach to the minimum, the power can be further reduced by a factor of more than 1/10 without changing the basic architectures.

  • A Low Cost Reconfigurable Architecture for a UMTS Receiver

    Ronny VELJANOVSKI  Aleksandar STOJCEVSKI  Jugdutt SINGH  Aladin ZAYEGH  Michael FAULKNER  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3441-3451

    A novel reconfigurable architecture has been proposed for a mobile terminal receiver that can drastically reduce power dissipation dependant on adjacent channel interference. The proposed design can automatically scale the number of filter coefficients and word length respectively by monitoring the in-band and out-of-band powers. The new architecture performance was evaluated in a simulation UTRA-TDD environment because of the large near far problem caused by adjacent channel interference from adjacent mobiles and base stations. The UTRA-TDD downlink mode was examined statistically and results show that the reconfigurable architectures can save an average of up to 75% power dissipation respectively when compared to a fixed filter length of 57 and word length of 16 bits. This power saving only applies to the filter and ADC, not the whole receiver. This will prolong talk and standby time in a mobile terminal. The average number of taps and bits were calculated to be 14.98 and 10 respectively, for an outage of 97%.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.