1-11hit |
Masahiko SEKI Masato FUJII Tomokazu SHIGA
This paper proposes an address power reduction method for plasma display panels (PDPs) using subfield data smoothing based on a visual masking effect. High-resolution, high-frame-rate PDPs have large address power loss caused by parasitic capacitance. Although the address power is reduced by smoothing the subfield data, noise is generated. The proposed method reduces the address power while maintaining the image quality by choosing the smoothing area of the address data based on the visual masking effect. The results of subjective assessment for the images based on smoothed address data indicate that image quality is maintained.
Jae Kwang LIM Heung-Sik TAE Byungcho CHOI Seok Gi KIM
A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.
Joon-Yub KIM Yeon Tae JEONG Byung-Gwon CHO
The address discharge characteristics formed when an address pulse is applied in AC plasma display panels are investigated by changing the ramp-down voltage during the reset period. The address discharge time lag can be reduced when the difference between the ramp-down voltage and the scan-low voltage is set at a high value during the ramp-down period because the loss of the wall charges accumulated between the scan (Y) and address (A) electrodes during the reset period is minimized. In addition, the voltage applied to the X electrode during the ramp-down period can prevent the voltage margin from reduction even though applying high voltage difference on the Y electrodes.
Jae Kwang LIM Heung-Sik TAE Dong-Ho LEE Kazuhiro ITO Jung Pil PARK
Unlike the conventional plasma-TVs using the driving circuit with two polarities during the reset and address periods, the cost-effective driving circuit using only the positive voltage level during the reset and address periods is proposed and implemented in the 42-in. plasma-TV.
Myung Jin PARK Hyoun Soo PARK Young Hwan KIM
In this letter, we propose a new approach to incremental coding of the subfield codes for plasma display panels (PDPs). The proposed approach suppresses the halftone noise of the PDPs, while completely eliminating false contour noise, as do existing incremental subfield codes, by selecting an optimal incremental subfield code adaptively for a given input image. The proposed method maps the problem of selecting the optimal incremental subfield code onto a special-case shortest path problem. Results of experiment using 109 sample images illustrated that the proposed method improved the average peak signal-to-noise ratio by 4.4-6.2 dB in halftone noise compared with existing incremental subfield coding methods.
Jong Suk LEE Bong Seok KANG Young Hwan KIM
This letter proposes an efficient method to find the optimum subfield code, which minimizes the visual artifacts on the motion pictures of the plasma display panel (PDP). Existing codes were constructed to reduce dynamic false contour (DFC) only, and they are fixed codes used for every image. In contrast, the proposed method aims to minimize the total artifacts by DFC and halftone noise (HN), and it finds the best code for a given image, dynamically. First, this letter presents the novel models to estimate the effect of DFC and HN for given codewords and a given image. Then, it presents an efficient method that finds the optimum code for a given image using the well-known shortest-path algorithm. Experimental results, using 459 HDTV images, illustrated that the proposed approach improved the average PSNR by 0.713 dB and 7.004 dB in DFC and HN, respectively, when compared with Gravity Centre Code [1].
Heung-Sik TAE Jae-Kwnag LIM Byung-Gwon CHO
A new dual-slope ramp (DSR) reset waveform is proposed to improve the dark room contrast ratio in AC-PDPs. The proposed reset waveform has two different voltage slopes during a ramp-up period. The first voltage slope lower than the conventional ramp voltage slope plays a role in producing the priming particles under the low background luminance, which is considered to be a kind of pre-reset discharge. On the other hand, the second voltage slope higher than the conventional ramp voltage slope produces a stable reset discharge due to the presence of the priming particles, but gives rise to a slight increase in the background luminance. Thus, a bias voltage is also applied during a part of the second voltage-slope period to adjust the background luminance and address discharge characteristics. As a result, the proposed dual-slope reset waveform can lower the background luminance without causing the discharge instability, thereby improving the high dark room contrast ratio of an AC-PDP without reducing the address voltage margin.
Ki-Duck CHO Heung-Sik TAE Sung-Il CHIEN
A new bipolar scan waveform is proposed to increase the light emission duty factor by achieving the fast address in AC plasma display panel (AC-PDP). The new bipolar scan waveform consists of two-step scan pulse, which can separate the address discharge mode into two different discharge modes: a space charge generation mode and a wall charge accumulation mode. By adopting the new bipolar scan waveform, the light emission duty factor is increased considerably under the single scan ADS driving scheme due to the reduction of address time per single subfield.
Ikuo KANEKO Sadayoshi TAGUCHI Toshiyuki KASHIWAGI
Conventional metal-glazed thick-film resistors are applied to Hybrid Integrated Circuits, chip resistors and others. These resistors are usually fired at a high temperature of around 850C on ceramic substrates. Recently, however, attempts have been made to fire some metal-glazed thick-film resistors at lower temperatures on glass substrates for application as the control resistors for the discharge current of dc Plasma Display Panels (PDPs). We have attempted to realize such low-firing-temperature thick-film resistors using Pb2Ru2O7-x as conductive particles, two kinds of lead-borosilicate glasses as binders, and three kinds of metallic oxide as additives, which are fired at 580C on a soda lime glass substrate. The electrical properties of the specimens, 16 kinds in all, fabricated from various combinations of binder glasses, additives and electrode materials have been measured. Effective dimensions of the specimen resistor are 0.25 0.25 mm2 or less in surface area, since extremely small size is required by PDPs. The effect of the combination of additive and binder glass on the conductive particles of Pb2Ru2O7-x has been examined in detail, together with the affinity for electrical conjunction between resistor and electrode.
Ichiro KOIWA Takao KANEHARA Juro MITA
We studied the application of precursor solutions that can be fired into oxides to form a protective layer for AC-type Plasma Display Panel (AC-PDP). Our study of alkoxide and metallic soap as MgO precursors revealed that the crystallinity of MgO films depends on the starting substance. Since the electric discharge characteristics of a panel and the lamination effect of the protective layer depend on precursors, it was confirmed that binders having higher crystallinity provide better characteristics. Our study revealed that a compound-oxide film has high crystallinity. The application of a Ba0.6Sr0.4Gd2O4 formation solution to a binder and the application of a Sr0.6Mg0.4Gd2O4 formation solution to a protective layer both are seemed promising We also found that a double-layer film, made by forming a protective layer of fine MgO powder and a Ba0.6Sr0.4Gd2O4 binder, on top of a protective layer made of fine MgO powder and a MgO binder, provides a luminous efficiency 5.3 times higher than that of sputtered MgO film which is one of candidates for the large panel, and the conventional electron beam evaporation is not suitable for the large panel. We further found that a triple-layer protective film made by forming a thin film of Sr0.6Mg0.4Gd2O4 provides low voltages of 1 V in firing voltage (Vf) and 35 V in sustaining voltage (Vs) compared to the double-layer film and provides a luminous efficiency 5.5 times higher than that of sputtered MgO film. A life test revealed the triple-layer film in particular providing a useful life of more than 10,000 hours. From these findings, we concluded that the compound-oxides which is composed of alkaline-earth-metal and rare-earth-element could be applied effectively to a protective layer for AC-PDP.
Ichiro KOIWA Takao KANEHARA Juro MITA
Protective layers in AC plasma display panels (PDP) are usually formed by vacuum vapor deposition or sputtering. It is important to study the protective MgO layer by means of screen-printing for fabricating a large size PDP and reducing its cost. With the objectives of enlarging the panel size and reducing cost, we studied the fabrication of the protective MgO layer by means of screen-printing. In this study, we succeeded in lowering the drive voltage by using a MgO powder prepared by vapor phase oxidation instead of conventional decomposition of the magnesium salt. Further, by adding a MgO liquid binder, we attained a good luminous efficiency twice as high as that attained with a sputtered protective layer and lowered the drive voltage. When this protective layer was combined with He-Xe gas enclosure, the half-life of luminance was 5,000 hours. With Ne-Xe gas, the luminance deteriorated no more than 40% after 5,000 hours. A screen-printed protective MgO layer containing no MgO liquid binder showed a short half-life of 800 hours even with the use of Ne-Xe gas. In this case, the discharge voltage changed greatly and some cells did not discharge. It is concluded that the combination of an ultrafine MgO powder prepared by vapor phase oxidation and a MgO liquid binder can clear the way for making AC PDPs with a long lifetime, high efficiency, and low voltage a practical reality.