Kaikai CHI Xiaohong JIANG Yi-hua ZHU Yanjun LI
Recently, network coding has been applied to reliable multicast in wireless networks for packet loss recovery, resulting in significant bandwidth savings. In network-coding-based multicast schemes, once a receiver receives one packet from the source it sends an ACK to acknowledge packet receipt. Such acknowledgment mechanism has the following limitation: when an ACK from one receiver is lost, the source considers the corresponding packet to be lost at this receiver and then conducts unnecessary retransmission. Motivated by this basic observation, we first propose a block-based acknowledgment mechanism, where an ACK now acknowledges all previously received packets in the current block such that the later received ACKs can offset the loss of previous ACKs. To reduce the total amount of feedback overhead, we further propose a more simple feedback mechanism, in which the receivers only start to send acknowledgments from the last two packets (not from the first one as in the first mechanism) of the current block. The first mechanism has the potential to achieve better performance over the latter one in wireless networks with long deep fades (i.e., continuous packet losses) due to its continuous transmissions of ACKs, while the second one is more promising for wireless networks with only random packet losses due to its smaller amount of feedback. Both theoretical and simulation results demonstrate that, compared to the current acknowledgment mechanism in network-coding-based reliable multicast schemes, these two mechanisms can achieve much higher bandwidth efficiency.
Woongsoo NA Gunwoo LEE Hyungchul BAE Jungsuk YU Sungrae CHO
The IEEE has recently released IEEE 802.15.5 standard [3] to provide multi-hop mesh functions for low-rate wireless personal area networks (WPANs). In this paper, we extensively describe a link-layer reliable broadcast protocol referred to as timer-based reliable broadcast (TRB) [3] in the IEEE 802.15.5 standard. The TRB scheme exploits (1) bitmap based implicit ACK to effectively reduce the unnecessary error control messages and (2) randomized timer for ACK transmission to substantially reduce the possibility of contentions. Performance evaluation shows that the TRB scheme achieves 100% reliability compared with other schemes with expense of slightly increased energy consumption.
This paper provides an overview on the recent research on networked control with an emphasis on the tight relation between the two fields of control and communication. In particular, we present several results focusing on data rate constraints in networked control systems, which can be modeled as quantization of control-related signals. The motivation is to reduce the amount of data rate as much as possible in obtaining control objectives such as stabilization and control performance under certain measures. We also discuss some approaches towards control problems based on techniques from signal processing and information theory.
Jae-Joon LEE Jihye LEE Jaesung LIM
When a jamming attack occurs, existing ad hoc routing protocols can experience significant throughput degradation and unnecessary control overhead due to the inclusion of unreliable links into routing paths. In this work, we identify which factors hinder establishment of reliable routing paths by the existing routing protocols in the face of jamming attacks. Our solution is Jamming-Aware Routing (JAR) based on OLSR protocol, which provides explicit route recovery procedures to counteract jamming attack. By establishing a reliable routing path, the proposed scheme achieves significant throughput gains as well as control overhead reduction.
Akira NAGATA Shinya YAMAMURA Masato TSURU
Motivated by the question of how to quickly transfer large files if multiple and heterogeneous networks are available but each has insufficient performance for a requested task, we propose a data transfer framework for integrating multiple and heterogeneous challenged access networks, in which long delays, heavy packet losses, and frequent disconnections are observed. An important feature of this framework is to transmit the control information separately from the transmission of data information, where they are flexibly transferred on different types of communication media (network paths) in different ways, and to provide a virtual single network path between the two nodes. We describe the design of the mechanisms of this framework such as the retransmission, the rate adjustment of each data flow, and the data-flow setup control. We validate a prototype implementation through two different experiments using terrestrial networks and a satellite communication system.
Dae-Young KIM Jinsung CHO Ben LEE
Reliable data transmission is desirable in wireless sensor networks due to the high packet loss rate during multi-hop transmissions. To reliably transmit data for event-driven applications, packet loss recovery mechanism is needed. For loss recovery, sensor nodes need to keep packets in their buffers until transmissions successfully complete. However, since sensor nodes have limited memory, packets cannot be buffered for a long period of time. This letter proposes an efficient buffer management technique that caches data packets for appropriate amount of time to minimize the resource requirements and at the same time provide reliable data transmission among sensor nodes.
Katsuhiro NAITO Kazuo MORI Hideo KOBAYASHI
This paper proposes a multicast delivery system using base station diversity for cellular systems. Conventional works utilize single wireless link communication to achieve reliable multicast. In cellular systems, received signal intensity declines in cell edge areas. Therefore, wireless terminals in cell edge areas suffer from many transmission errors due to low received signal intensity. Additionally, multi-path fading also causes dynamic fluctuation of received signal intensity. Wireless terminals also suffer from transmission errors due to the multi-path fading. The proposed system utilizes multiple wireless link communication to improve transmission performance. Each wireless terminal communicates with some neighbor base stations, and combines frame information which arrives from different base stations. Numerical results demonstrate that the proposed system can achieve multicast data delivery with a short transmission period and can reduce consumed wireless resource due to retransmission.
Kaikai CHI Xiaohong JIANG Baoliu YE Susumu HORIGUCHI
Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks, where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.
Yun GE Guojun WANG Qing ZHANG Minyi GUO
We propose a Multiple Zones-based (M-Zone) routing protocol to discover node-disjoint multiplath routing efficiently and effectively in large-scale MANETs. Compared with single path routing, multipath routing can improve robustness, load balancing and throughput of a network. However, it is very difficult to achieve node-disjoint multipath routing in large-scale MANETs. To ensure finding node-disjoint multiple paths, the M-Zone protocol divides the region between a source and a destination into multiple zones based on geographical location and each path is mapped to a distinct zone. Performance analysis shows that M-Zone has good stability, and the control complexity and storage complexity of M-Zone are lower than those of the well-known AODVM protocol. Simulation studies show that the average end-to-end delay of M-Zone is lower than that of AODVM and the routing overhead of M-Zone is less than that of AODVM.
This letter proposes a busy-tone based scheme for reliable and efficient broadcasting in mobile ad hoc networks. Control packets such as RTS, CTS and ACK are ignored in the broadcast scheme, and two busy tones are used, one for channel reservation and the other for negative acknowledgement. Unlike traditional schemes for reliable broadcasting, the proposed scheme is highly efficient as it achieves both collision avoidance and fast packet loss recovery. Simulation results are presented which show the effectiveness of the proposed scheme.
In reliable multicast, feedback and recovery traffic limit the performance and scalability of the multicast session. In this paper, we present an improvement to the many-to-many reliable multicast protocol, Group-Aided Multicast protocol (GAM), with a local-group based recovery by making use of forward error correction (FEC) locally in addition to NACK/retransmission. In contrast to the original GAM, which only makes use of NACK-based recovery, our scheme produces FEC packets and multicasts the packets within the scope of a local group in order to correct uncorrelated errors of the local members in each group of the multicast session, which reduces the need for NACK/retransmission. By using our scheme, redundancy traffic can be localized in each group within a multicast session, and the overall recovery traffic can be reduced.
Kaoru KUROSAWA Kazuhiro SUZUKI
It is known that perfectly secure (1-round, n-channel) message transmission (MT) schemes exist if and only if n ≥ 3t+1, where t is the number of channels that the adversary can corrupt. Then does there exist an almost secure MT scheme for n=2t+1 ? In this paper, we first sum up a number flaws of the previous almost secure MT scheme presented at Crypto 2004. We next show an equivalence between almost secure MT schemes and secret sharing schemes with cheaters. By using our equivalence, we derive a lower bound on the communication complexity of almost secure MT schemes. Finally, we present a near optimum scheme which meets our bound approximately. This is the first construction of provably secure almost secure (1-round, n-channel) MT schemes for n=2t+1.
In wireless ad hoc networks, providing an authentication service to verify that the broadcast packet is from the claimed sender without modification, is challenging due mainly to the inherently lossy wireless links. This paper presents a novel Secure and Reliable Broadcasting that reinforces the broadcast authentication with reliability and energy-efficiency capabilities by using the cooperative diversity to superimpose two distinct signals. The proposed protocol achieves significant savings of transmission power and fair assurance of reliability among receivers.
Reliable end-to-end delivery service is one of the most important issues for wireless sensor networks in large-scale deployments. In this paper, a reliable data transport protocol, called the Data Forwarding Protocol (DFP), is proposed to improve the end-to-end delivery rate with minimum transport overhead for recovering from data loss in large-scale wireless sensor environments consisting of low speed mobile sensor nodes. The key idea behind this protocol is the establishment of multi-split connection on an end-to-end route, through the Agent Host (AH), which plays the role of a virtual source or a sink node. In addition, DFP applies the local error control and the local flow control mechanisms to multi-split connections, according to network state. Extensive simulations are carried out via ns-2 simulator. The simulation results demonstrate that DFP not only provide up to 30% more reliable data delivery, but also reduces the number of retransmission generated by data loss, compared with the TCP-like end-to-end approach.
Teruji SHIROSHITA Shingo KINOSHITA Takahiko NAGATA Tetsuo SANO Yukihiro NAKAMURA
Reliable Multicast has been applied to large-scale contents delivery systems for distributing digital contents to a large number of users without data loss. Reliable contents distribution is indispensable for software updates and management data sharing in actual delivery services. This paper evaluates the implementation and performance of RMTP; a reliable multicast protocol for bulk-data transfer, through the developments of contents delivery systems. Software configuration is also examined including operation functions such as delivery scheduling. Furthermore, applicability of reliable multicast to emerging broadband networks is also discussed based on the experimentation results. Through the deployment of the protocol and the software, performance estimation has played a key role for constructing the delivery systems as well as for designing the communication protocol.
We propose, in this article, the Hierarchical Behavior-Knowledge Space as an extension of Behavior-Knowledge Space. Hierarchical BKS utilizes ranked level individual classifiers, and automatically expands its behavioral knowledge in order to satisfy given reliability requirement. From the statistical view point, its decisions are as optimal as those of original BKS, and the reliability threshold is a lower bound of estimated reliability. Several comparisons with original BKS and unanimous voting are shown with some experiments.
Chang-Han KIM Jae-Heon YANG Ikjun YEOM
In this paper, we address how to construct efficient retransmission trees for reliable multicast. Efficiency of retransmission trees mainly depends on locations of repairers, which are in charge of retransmitting lost packets. We propose an algorithm for each receiver to find a repairer for efficient recovery. The resulting tree for retransmission is organized by pairs of a receiver and a repairer which is the host "nearest" to the receiver among the multicast group members "nearer" to the sender. We formally prove that the proposed algorithm realizes reliable multicast with only constant times of a lower bound cost achievable through impractical router support. We also evaluate the algorithm through extensive simulations.
Hideki YAGI Toshiyasu MATSUSHIMA Shigeichi HIRASAWA
We consider the reliability-based heuristic search methods for maximum likelihood decoding, which generate test error patterns (or, equivalently, candidate codewords) according to their heuristic values. Some studies have proposed methods for reducing the space complexity of these algorithms, which is crucially large for long block codes at medium to low signal to noise ratios of the channel. In this paper, we propose a new method for reducing the time complexity of generating candidate codewords by storing some already generated candidate codewords. Simulation results show that the increase of memory size is small.
Raphael LABAYRADE Jerome DOURET Jean LANEURIT Roland CHAPUIS
Road traffic incidents analysis has shown that a third of them occurs without any conflict which indicates problems with road following. In this paper a driving safety assistance system is introduced, whose aim is to prevent the driver drifting off or running off the road. The road following system is based on a frontal on-board monocular camera. In order to get a high degree of reliability and robustness, an original combination of three different algorithms is performed. Low level results from the first two algorithms are used to compute a reliability indicator and to update a high level model through the third algorithm using Kalman filtering. Searching areas of the road sides for the next image are also updated. Experimental results show the reliability and the robustness of this original association of three different algorithms. Various road situations are addressed, including roads with high curvature. A multi-lanes extension is also presented.
Sung-Kwan Youm Meejoung KIM Chul-Hee KANG
This paper considers the reliable multicast transport protocols used in hybrid networks that include wired and wireless networks and transparent proxy servers. We present four analytic performance models of two extreme reliable multicast transport protocols, sender-initiated and receiver-initiated, and supported and unsupported by transparent proxy servers are considered in each reliable multicast protocol. We analyze the throughputs of these four different models mathematically. Numerical results show that transparent proxy servers give good effects to overall performance. Furthermore, the receiver-initiated reliable multicast supported by transparent proxy servers gives better performances of total throughput than sender-initiated reliable multicast supported by transparent proxy servers. We provide efficiency criterion of the optimal number of transparent proxy servers for each protocol under varying wireless loss probabilities. Numerical results are verified by simulations.