1-12hit |
Yucong ZHANG Stefan HOLST Xiaoqing WEN Kohei MIYASE Seiji KAJIHARA Jun QIAN
Loading test vectors and unloading test responses in shift mode during scan testing cause many scan flip-flops to switch simultaneously. The resulting shift switching activity around scan flip-flops can cause excessive local IR-drop that can change the states of some scan flip-flops, leading to test data corruption. A common approach solving this problem is partial-shift, in which multiple scan chains are formed and only one group of the scan chains is shifted at a time. However, previous methods based on this approach use random grouping, which may reduce global shift switching activity, but may not be optimized to reduce local shift switching activity, resulting in remaining high risk of test data corruption even when partial-shift is applied. This paper proposes novel algorithms (one optimal and one heuristic) to group scan chains, focusing on reducing local shift switching activity around scan flip-flops, thus reducing the risk of test data corruption. Experimental results on all large ITC'99 benchmark circuits demonstrate the effectiveness of the proposed optimal and heuristic algorithms as well as the scalability of the heuristic algorithm.
Fuqiang LI Xiaoqing WEN Kohei MIYASE Stefan HOLST Seiji KAJIHARA
Excessive IR-drop in capture mode during at-speed scan testing may cause timing errors for defect-free circuits, resulting in undue test yield loss. Previous solutions for achieving capture-power-safety adjust the switching activity around logic paths, especially long sensitized paths, in order to reduce the impact of IR-drop. However, those solutions ignore the impact of IR-drop on clock paths, namely test clock stretch; as a result, they cannot accurately achieve capture-power-safety. This paper proposes a novel scheme, called LP-CP-aware ATPG, for generating high-quality capture-power-safe at-speed scan test vectors by taking into consideration the switching activity around both logic and clock paths. This scheme features (1) LP-CP-aware path classification for characterizing long sensitized paths by considering the IR-drop impact on both logic and clock paths; (2) LP-CP-aware X-restoration for obtaining more effective X-bits by backtracing from both logic and clock paths; (3) LP-CP-aware X-filling for using different strategies according to the positions of X-bits in test cubes. Experimental results on large benchmark circuits demonstrate the advantages of LP-CP-aware ATPG, which can more accurately achieve capture-power-safety without significant test vector count inflation and test quality loss.
Yuta YAMATO Xiaoqing WEN Kohei MIYASE Hiroshi FURUKAWA Seiji KAJIHARA
Power-aware X-filling is a preferable approach to avoiding IR-drop-induced yield loss in at-speed scan testing. However, the ability of previous X-filling methods to reduce launch switching activity may be unsatisfactory, due to low effect (insufficient and global-only reduction) and/or low scalability (long CPU time). This paper addresses this reduction quality problem with a novel GA (Genetic Algorithm) based X-filling method, called GA-fill. Its goals are (1) to achieve both effectiveness and scalability in a more balanced manner and (2) to make the reduction effect of launch switching activity more concentrated on critical areas that have higher impact on IR-drop-induced yield loss. Evaluation experiments are being conducted on both benchmark and industrial circuits, and the results have demonstrated the usefulness of GA-fill.
Kohei MIYASE Xiaoqing WEN Seiji KAJIHARA Yuta YAMATO Atsushi TAKASHIMA Hiroshi FURUKAWA Kenji NODA Hideaki ITO Kazumi HATAYAMA Takashi AIKYO Kewal K. SALUJA
Capture-safety, (defined as the avoidance of timing error due to unduly high launch switching activity in capture mode during at-speed scan testing), is critical in avoiding test induced yield loss. Although several sophisticated techniques are available for reducing capture IR-drop, there are few complete capture-safe test generation flows. This paper addresses the problem by proposing a novel and practical capture-safe test generation flow, featuring (1) a complete capture-safe test generation flow; (2) reliable capture-safety checking; and (3) effective capture-safety improvement by combining X-bit identification & X-filling with low launch-switching-activity test generation. The proposed flow minimizes test data inflation and is compatible with existing automatic test pattern generation (ATPG) flow. The techniques proposed in the flow achieve capture-safety without changing the circuit-under-test or the clocking scheme.
Yongjoon KIM Jaeseok PARK Sungho KANG
This paper presents a selective scan slice grouping technique for test data compression. In conventional selective encoding methods, the existence of a conflict bit contributes to large encoding data. However, many conflict bits are efficiently removed using the scan slice grouping technique, which leads to a dramatic improvement of encoding efficiency. Experiments performed with large ITC'99 benchmark circuits presents the effectiveness of the proposed technique and the test data volume is reduced up to 92% compared to random-filled test patterns.
Yongjoon KIM Jaeseok PARK Sungho KANG
In this paper, we present an efficient low power scan test technique which simultaneously reduces both average and peak power consumption. The selective scan chain activation scheme removes unnecessary scan chain utilization during the scan shift and capture operations. Statistical scan cell reordering enables efficient scan chain removal. The experimental results demonstrated that the proposed method constantly reduces the average and peak power consumption during scan testing.
Yongjoon KIM Myung-Hoon YANG Jaeseok PARK Eunsei PARK Sungho KANG
This paper presents a grouped scan slice encoding technique using scan slice repetition to simultaneously reduce test data volume and test application time. Using this method, many scan slices that would be incompatible with the conventional selective scan slice method can be encoded as compatible scan slices. Experiments were performed with ISCAS'89 and ITC'99 benchmark circuits, and results show the effectiveness of the proposed method.
This paper proposes a method providing efficient test compression. The proposed method is for robust testable path delay fault testing with scan design facilitating two-pattern testing. In the proposed method, test data are interleaved before test compression using statistical coding. This paper also presents test architecture for two-pattern testing using the proposed method. The proposed method is experimentally evaluated from several viewpoints such as compression rates, test application time and area overhead. For robust testable path delay fault testing on 11 out of 20 ISCAS89 benchmark circuits, the proposed method provides better compression rates than the existing methods such as Huffman coding, run-length coding, Golomb coding, frequency-directed run-length (FDR) coding and variable-length input Huffman coding (VIHC).
Xiaoqing WEN Seiji KAJIHARA Kohei MIYASE Tatsuya SUZUKI Kewal K. SALUJA Laung-Terng WANG Kozo KINOSHITA
High power dissipation can occur when the response to a test vector is captured by flip-flops in scan testing, resulting in excessive IR drop, which may cause significant capture-induced yield loss in the DSM era. This paper addresses this serious problem with a novel test generation method, featuring a unique algorithm that deterministically generates test cubes not only for fault detection but also for capture power reduction. Compared with previous methods that passively conduct X-filling for unspecified bits in test cubes generated only for fault detection, the new method achieves more capture power reduction with less test set inflation. Experimental results show its effectiveness.
Zhiqiang YOU Tsuyoshi IWAGAKI Michiko INOUE Hideo FUJIWARA
This paper proposes a low power scan test scheme and formulates a problem based on this scheme. In this scheme the flip-flops are grouped into N scan chains. At any time, only one scan chain is active during scan test. Therefore, both average power and peak power are reduced compared with conventional full scan test methodology. This paper also proposes a tabu search-based approach to minimize test application time. In this approach we handle the information during deterministic test efficiently. Experimental results demonstrate that this approach drastically reduces both average power and peak power dissipation at a little longer test application time on various benchmark circuits.
Xiaoqing WEN Yoshiyuki YAMASHITA Seiji KAJIHARA Laung-Terng WANG Kewal K. SALUJA Kozo KINOSHITA
Research on low-power scan testing has been focused on the shift mode, with little consideration given to the capture mode power. However, high switching activity when capturing a test response can cause excessive IR-drop, resulting in significant yield loss due to faulty test results. This paper addresses this problem with a novel low-capture-power X-filling method by assigning 0's and 1's to unspecified bits (X-bits) in a test cube to reduce the switching activity in capture mode. This method can be easily incorporated into any test generation flow, where test cubes can be obtained during ATPG or by X-bit identification. Experimental results show the effectiveness of this method in reducing capture power dissipation without any impact on area, timing, and fault coverage.
Seiji KAJIHARA Koji ISHIDA Kohei MIYASE
This paper presents a test vector modification method for reducing average power dissipation during test application for a full-scan circuit. The method first identifies a set of don't care (X) inputs of given test vectors, to which either logic value 0 or 1 can be assigned without losing fault coverage. Then, the method reassigns logic values to the X inputs so as to decrease switching activity of the circuit during scan shifting. Experimental results for benchmark circuits show the proposed method could decrease switching activity of a given test set to 45% of the original test sets in average.