Keyword Search Result

[Keyword] sensor network(416hit)

241-260hit(416hit)

  • Development of a 2D Communication Sensor Network Using a Single-Carrier Frequency for both Power and Data Transmission

    Bing ZHANG  Toshifumi OOTA  Azman-Osman LIM  Youiti KADO  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2945-2955

    Two-dimensional (2D) communication is a novel physical communication form that utilizes the surface as a communication medium to provide both data and power transmission service to the sensor devices placed on the surface's top. In previous works, we developed 2D communication systems that utilize separated channels for data and power transmission. Though this assignment of different channels can achieve strong network performance, the sensor devices must be equipped with two or more interfaces to simultaneously receive the power and data signals, which significantly complicates and enlarges those devices. Moreover, when a channel is used for the power supply, it not only continually monopolizes the wireless frequency resource, it is also likely to cause interference with the other signal source in the case of the input power continually being sent out above a certain level. In this paper, we develop a novel 2D communication sensor system by using a single-carrier frequency for both power and data transmission, equipped with the wireless module for the two together in a compact body. To enable a sensor node that concurrently receives energy and data communication, we propose an enhancement scheme based on the IEEE802.15.4 MAC protocol standard. Through both computer simulation and actual measurement of the output power, we evaluate the performance of power supply and data transmission over the developed 2D communication sensor system.

  • Location Error Compensation for Geographic Routing in WSNs

    Youngbae KONG  Younggoo KWON  Gwitae PARK  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2971-2975

    In wireless sensor networks (WSNs), geographic routing algorithms can enhance the network capacity. However, in real WSNs, it is difficult for each node to know its physical location accurately. Geographic routing with location errors may produce serious problems such as disconnected links and data transmission delays. In this letter, we present an efficient location error compensation algorithm for the geographic routing. The proposed algorithm efficiently detects and corrects the location errors and significantly enhances the network performance of geographic routing in the presence of location errors.

  • Secure Cluster Head Election Using Mark Based Exclusion in Wireless Sensor Networks

    Gicheol WANG  Gihwan CHO  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2925-2935

    In clustered sensor networks, because CHs (Cluster Heads) are the collection points of data, they are likely to be compromise targets of attackers. So, they need to be changed through a CH election scheme as frequently as possible. Besides, because the compromised nodes must try to become a CH, a CH election scheme should prevent them from being a CH. This paper presents a secure CH election scheme for clustered sensor networks, which changes the CH role nodes securely by excluding the compromised nodes from CH candidates. In the proposed scheme, each node gives marks for behavior of all other nodes in the same CH election region and exchanges the mark list with them. Then, each node computes the average marks for all nodes in the region, and nodes whose average mark is less than a specific threshold are excluded from CH candidates. A CH is elected among the remaining candidates. Simulation results show that our scheme provides strong resilience against misbehavior of compromised nodes and reduces energy consumption of nodes. Another simulation results show that our scheme well operates in the environment where some packets are often lost.

  • Experimental Results on Simple Distributed Cooperative Transmission Scheme with Visible Light Communication

    Takaya YAMAZATO  Koji NAKAO  Hiraku OKADA  Masaaki KATAYAMA  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2959-2962

    We consider a distributed transmission of data packet to a sink where the distance of a sensor node to a sink is much longer than the maximum communication range of each sensor node. We give a simple modification to the transmitter, i.e., multiplication of random phase before the transmission. Thanks to Turbo Code, it is possible to extend the transmission range as the received amplitude varies symbol by symbol for our scheme while whole data packet may be lost for the conventional scheme. In this letter, we report the experimental results of our scheme equivalently developed using visible light communication.

  • Implementation of a WSN-Based Structural Health Monitoring Architecture Using 3D and AR Mode

    Bonhyun KOO  Taeshik SHON  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2963-2966

    Recently wireless sensor networks (WSN) has risen as one of the advanced candidate technologies in order to provide more efficient structure health monitoring (SHM) solution in construction sites. In this paper, we proposed WSN monitoring framework in building sites based on 3D visualization and Augmented Reality (AR) in mobile devices. The proposed system applies 3D visualization and AR technology to camera-enabled mobile devices in WSN environment in order to gather much more information than before. Based on the proposed system, we made an experiment to validate the effectiveness of 3D and AR mode using collected data in IEEE 802.15.4-based WSN.

  • Maximizing Lifetime Sensing Coverage in Heterogeneous Sensors Deployments

    Jae-Joon LEE  Bhaskar KRISHNAMACHARI  C.-C. Jay KUO  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2859-2867

    In practical settings of wireless sensor networks, it is often feasible to consider heterogeneous deployments of devices with different capabilities. Under prescribed cost constraints, we analyze such heterogenous deployments and present how they impact the coverage of a sensor network including spatial correlation effect. We derive expressions for the heterogeneous mixture of devices that maximizes the lifetime coverage in both single-hop direct and multi-hop communication models. Our results show that using an optimal mixture of many inexpensive low-capability devices and some expensive high-capability devices can significantly extend the duration of a network's sensing performance, especially in a network with low spatial correlation.

  • Feedback Control-Based Energy Management for Ubiquitous Sensor Networks Open Access

    Ting ZHU  Ziguo ZHONG  Yu GU  Tian HE  Zhi-Li ZHANG  

     
    INVITED PAPER

      Vol:
    E93-B No:11
      Page(s):
    2846-2854

    Slow development in battery technology and rapid advances in ultra-capacitor design have motivated us to investigate the possibility of using capacitors as the sole energy storage for wireless sensor nodes to support ubiquitous computing. The starting point of this work is TwinStar, which uses ultra-capacitor as the only energy storage unit. To efficiently use the harvested energy, we design and implement feedback control techniques to match the activity of sensor nodes with the dynamic energy supply from environments. We conduct system evaluation by deploying sensor devices under three typical real-world settings -- indoor, outdoor, and mobile backpack under a wide range of system settings. Results indicate our feedback control can effectively utilize energy and ensure system sustainability. Nodes running feedback control have longer operational time than the ones running non-feedback control.

  • A Relay Selection Based on Eigenvalue Decomposition for Cooperative Communications in Indoor Ubiquitous Sensor Networks

    Sekchin CHANG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2967-2970

    A new best-relay selection scheme is proposed in this letter in order to maintain a reliable cooperative communications for ubiquitous sensor networks in indoor environments. The suggested technique relies on eigenvalue decomposition to select the best relay. The simulation results confirm that the performance of the proposed approach is better than that of the previous scheme in indoor environments.

  • Adaptive 3-Dimensional Topology Control for Wireless Ad-Hoc Sensor Networks

    Junseok KIM  Jongho SHIN  Younggoo KWON  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2901-2911

    Developing an adaptive 3-dimensional (3D) topology control algorithm is important because most wireless nodes are mobile and deployed in buildings. Moreover, in buildings, wireless link qualities and topologies change frequently due to various objects and the interference from other wireless devices. Previous topology control algorithms can suffer significant performance degradation because they only use the Euclidean distance for the topology construction. In this paper, we propose a novel adaptive 3D topology control algorithm for wireless ad-hoc sensor networks, especially in indoor environments. The proposed algorithm adjusts the minimum transmit power adaptively with considering the interference effect. To construct the local topology, each node divides the 3D space, a sphere centered at itself, into k equal cones by using Platonic solid (i.e., regular k-hedron) and selects the neighbor that requires the lowest transmit power in each cone. Since the minimum transmit power values depend on the effect of interferences, the proposed algorithm can adjust topology adaptively and preserve the network connectivity reliably. To evaluate the performance of algorithms, we conduct various experiments with simulator and real wireless platforms. The experimental results show that the proposed algorithm is superior to the previous algorithms in terms of the packet delivery ratio and the energy consumption with relatively low complexity.

  • Complex Sensor Event Processing for Business Process Integration

    Pablo Rosales TEJADA  Jae-Yoon JUNG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2976-2979

    Ubiquitous technologies such as sensor network and RFID have enabled companies to realize more rapid and agile manufacturing and service systems. In this paper, we addresses how the huge amount of real-time events coming from these devices can be filtered and integrated to business process such as manufacturing, logistics, and supply chain process. In particular, we focus on complex event processing of sensor and RFID events in order to integrate them to business rules in business activities. We also illustrate a ubiquitous event processing system, named ueFilter, which helps to filter and aggregate sensor event, to detect event patterns from sensors and RFID by means of event pattern languages (EPL), and trigger event-condition-action (ECA) in logistics processes.

  • Traffic Adaptive MAC Mechanism for IEEE 802.15.4 Cluster Based Wireless Sensor Networks with Various Traffic Non-uniformities

    Mario ARZAMENDIA  Kazuo MORI  Katsuhiro NAITO  Hideo KOBAYASHI  

     
    PAPER-Network

      Vol:
    E93-B No:11
      Page(s):
    3035-3047

    This paper proposes a medium access control (MAC) mechanism for the recently developed IEEE 802.15.4 standard, a promising candidate to become the physical (PHY) and MAC layer standard for Wireless Sensor Networks (WSNs). The main concern in WSNs is the energy consumption, and this paper presents a mechanism that adapts properly the duty cycle operation according to the traffic conditions. Various traffic adaption mechanisms have been presented for the MAC layer of the IEEE 802.15.4. However these conventional mechanisms only consider the temporal traffic fluctuations. The proposed mechanism outperforms the conventional mechanism when applied to cluster-tree based WSNs, because it considers not only the temporal fluctuations but also the spatial (geographical) fluctuations, which are intrinsic characteristics of traffic in WSNs with the cluster tree topology. Evaluations showed that the proposed mechanism achieves less energy consumption than the conventional traffic adaptation mechanism, with maintaining almost the same transmission performance.

  • A Study about Wireless Network Communication Performance at the Coastal Area for Underwater Monitoring Sensor Networks

    Kuniaki KAWABATA  Takafumi KOBAYASHI  Fumiaki TAKEMURA  Hideo SATO  Tsuyoshi SUZUKI  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2956-2958

    This manuscript reported basic examination results of the wireless network communication performance at the coast. We consider that underwater environment condition monitoring is a sort of likely typical application for ubiquitous sensor networks. The result of the experiment shows the performance of the wireless network communication at the coastal area.

  • A 4.78 µs Dynamic Compensated Inductive Coupling Transceiver for Ubiquitous and Wearable Body Sensor Network

    Seulki LEE  Jerald YOO  Hoi-Jun YOO  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2892-2900

    A Real-time Capacitor Compensation (RCC) scheme is proposed for low power and continuous communication in the wearable inductive coupling transceiver. Since inductance values of wearable inductor vary dynamically with deterioration of its communication characteristics, the inductance value is monitored and its resonance frequency is adjusted by additive parallel/serial capacitors in real time. RLC Bridge for detection of the inductance variations and the Dual-edge Sampling Comparator for recognition of the variance direction are proposed. It is implemented in a 0.18 µm CMOS technology, and it occupies a 12.7 mm2 chip area. The proposed transceiver consumes only 426.6 µW at 4 Mbps data rate. The compensation time takes 4.78 µs, including 3 µs of detection and 1.78 µs for compensation process in worst case.

  • Energy Efficient Skyline Query Processing in Wireless Sensor Networks

    Dongook SEONG  Junho PARK  Myungho YEO  Jaesoo YOO  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:10
      Page(s):
    2854-2857

    In sensor networks, many studies have been proposed to process in-network aggregation efficiently. Unlike general aggregation queries, skyline query processing compares multi-dimensional data for the result. Therefore, it is very difficult to process the skyline queries in sensor networks. It is important to filter unnecessary data for energy-efficient skyline query processing. Existing approaches get rid of unnecessary data transmission by deploying filters to whole sensors. However, network lifetime is reduced due to energy consumption for transmitting filters. In this paper, we propose a lazy filtering-based in-network skyline query processing algorithm to reduce energy consumption by transmitting filters. Our algorithm creates the skyline filter table (SFT) in the data gathering process which sends data from sensor nodes to the base station and filters out unnecessary data transmissions using it. The experimental results show that our algorithm reduces false positive by 53% and improves network lifetime by 44% on average over the existing method.

  • Optimal Ratio of Direct/Multi-Hop Forwarding for Network Lifetime Maximization in Wireless Sensor Networks

    Jeong-Jun SUH  Young Yong KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:10
      Page(s):
    1861-1864

    In this letter, we discuss a forwarding method for maximizing network lifetime, which combines multi-hop forwarding and direct forwarding with a direct/multi-hop forwarding ratio of each sensor node. The direct forwarding ratio refers to the forwarding amount ratio of sensor nodes' own data directly towards a sink node in one packet/instance data generation rate. We tackle an optimization problem to determine the direct forwarding ratio of each sensor node, maximizing network lifetime, as well as nearly guaranteeing energy consumption balancing characteristics. The optimization problem is tackled through the Lagrange multiplier approach. We found that the direct forwarding ratio is overall inversely proportional to the increase of node index in h < i ≤ N case. Finally, we compare energy consumption and network lifetime of the proposed forwarding method with other existing forwarding methods. The numerical results show that the proposed forwarding method balances energy consumption in most of the sensor nodes, comparing with other existing forwarding methods, such as multi-hop forwarding and direct forwarding. The proposed forwarding method also maximizes network lifetime.

  • Proposal and Evaluation for Miniaturization and Power Saving of Sensor Network Terminals

    Hiroaki NOSE  Miao BAO  Kazumasa MIZUTA  Yasushi YOSHIKAWA  Hisayoshi KUNIMUNE  Masaaki NIIMURA  Yasushi FUWA  

     
    PAPER-Terminal Design for Sensor Network

      Vol:
    E93-A No:10
      Page(s):
    1735-1743

    Sensor network terminals are installed in large numbers in field, and they transmit data periodically by radio. Such terminals must be miniaturized, and power must be saved so that each device can be operated by battery for several years. As one way to satisfy these two conditions, in this research we propose a terminal design that eliminates the receiver circuit. Because there is no receiver circuit, circuitry can be miniaturized, and power can be saved because there is no need to consume power to receive signals. However, the terminals cannot perform carrier detection and reception acknowledgement because there is no receiver circuit. We propose following two new protocols to solve this problem.1. Terminal transmission times are randomized to prevent frequent collisions between specific terminals due to the lack of carrier detection. 2. Since all packet losses due to collision cannot be prevented with (1), data from a number of past transmissions is included in each packet so that a later packet can provide transmission data even if a packet is lost.In this report, we describe the proposed protocol, and evaluate its performance by simulation. Furthermore, we actually prototype the system and evaluate the prototype's performance.

  • A Parallel Transmission Scheme for All-to-All Broadcast in Underwater Sensor Networks

    Soonchul PARK  Jaesung LIM  

     
    PAPER-Network

      Vol:
    E93-B No:9
      Page(s):
    2309-2315

    This paper is concerned with the packet transmission scheduling problem for repeating all-to-all broadcasts in Underwater Sensor Networks (USN) in which there are n nodes in a transmission range. All-to-all communication is one of the most dense communication patterns. It is assumed that each node has the same size packet. Unlike the terrestrial scenarios, the propagation time in underwater communications is not negligible. We define all-to-all broadcast as the one where every node transmits packets to all the other nodes in the network except itself. So, there are in total n(n - 1) packets to be transmitted for an all-to-all broadcast. The optimal transmission scheduling is to schedule in a way that all packets can be transmitted within the minimum time. In this paper, we propose an efficient packet transmission scheduling algorithm for underwater acoustic communications using the property of long propagation delay.

  • On Selection of Energy-Efficient Data Aggregation Node in Wireless Sensor Networks

    Euisin LEE  Soochang PARK  Fucai YU  Sang-Ha KIM  

     
    LETTER-Network

      Vol:
    E93-B No:9
      Page(s):
    2436-2439

    In-network data aggregation is one of the most important issues for achieving energy-efficiency in wireless sensor networks since sensor nodes in the surrounding region of an event may generate redundant sensed data. The redundant sensed data should be aggregated before being delivered to the sink to reduce energy consumption. Which node should be selected as a Data Aggregation Node (DAN) for achieving the best energy efficiency is a difficult issue. To address this issue, this letter proposes a scheme to select a DAN for achieving energy-efficiency in an event region. The proposed scheme uses an analytical model to select the sensor node that has the lowest total energy consumption for gathering data from sensor nodes and for forwarding aggregated data to a sink, as a DAN. Analysis and simulation results show that the proposed scheme is superior to other schemes.

  • Lightweight Precision-Adaptive Time Synchronization in Wireless Sensor Networks

    Li LI  Yongpan LIU  Huazhong YANG  Hui WANG  

     
    PAPER-Network

      Vol:
    E93-B No:9
      Page(s):
    2299-2308

    Time synchronization is an essential service for wireless sensor networks (WSNs). However, fixed-period time synchronization can not serve multiple users efficiently in terms of energy consumption. This paper proposes a lightweight precision-adaptive protocol for cluster-based multi-user networks. It consists of a basic average time synchronization algorithm and an adaptive control loop. The basic average time synchronization algorithm achieves 1 µs instantaneous synchronization error performance. It also prolongs re-synchronization period by taking the average of two specified nodes' local time to be cluster global time. The adaptive control loop realizes diverse levels of synchronization precision based on the proportional relationship between sync error and re-synchronization period. Experimental results show that the proposed precision-adaptive protocol can respond to the sync error bound change within 2 steps. It is faster than the exponential convergence of the adaptive protocols based on multiplicative iterations.

  • Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network

    Akihiro ODA  Hiroaki NISHI  

     
    PAPER

      Vol:
    E93-B No:8
      Page(s):
    2012-2021

    Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.

241-260hit(416hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.